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Abstract—Tactile representation learning (TRL) equips robots
with the ability to leverage touch information, boosting per-
formance in tasks such as environment perception and object
manipulation. However, the heterogeneity of tactile sensors results
in many sensor- and task-specific learning approaches. This
limits the efficacy of existing tactile datasets, and the subsequent
generalisability of any learning outcome. In this work, we
investigate the applicability of vision foundational models to
sensor-agnostic TRL, via a simple yet effective transformation
technique to feed the heterogeneous sensor readouts into the
model. Our approach recasts TRL as a computer vision (CV)
problem, which permits the application of various CV techniques
for tackling TRL-specific challenges. We evaluate our approach
on multiple benchmark tasks, using datasets collected from four
different tactile sensors. Empirically, we demonstrate significant
improvements in task performance, model robustness, as well
as cross-sensor and cross-task knowledge transferability with
limited data requirements.

I. INTRODUCTION

The sense of touch allows humans to feel, understand and
ultimately manipulate through physical interaction. It is vital
for exploration, object discrimination and fine-grained control,
especially where visual perception lacks the resolution to
detect surface changes, or is denied entirely. Inspired by the
human sense of touch, robotic tactile learning has improved
performance in tasks such as object/environment recogni-
tion [1, 2], pick-and-place [3] and in-hand manipulation [4].

Tactile representation learning (TRL) leverages machine
learning (ML) to make sense of the rich data generated by
specialized tactile sensors. Design choices such as sampling
resolution, operating conditions and cost result in different
tactile sensors adopting distinct sensing mechanisms (e.g.
visual signals [5] and barometric signals [6]). Ideally, TRL
should be sensor-agnostic, accommodating various data for-
mats of different sensors and able to construct consistent
representations of objects and environments. In practice, how-
ever, most methods developed are sensor-specific with tailored
architectures and data processing routines [e.g. 5, 7, 8, 9].

This siloed approach has multiple limitations. First, individ-
ual tactile datasets are usually small due to the high cost of
data collection. The tactile representation derived from such
small datasets often generalize less well, especially for out-
of-distribution data [e.g., 8, 10]. Even calibration differences
and expected wear from regular usage present domain shifts
detrimental to model performance. Furthermore, the lack of
a unifying data format for different tactile sensors makes it

difficult to reuse knowledge captured in learned represen-
tations. For a new sensor design, the accompanying tactile
representation model has to be learned from scratch, along
with expensive data collection. All these limit the effectiveness
and efficiency of TRL.

The above limitations are further highlighted when we
contrast TRL with other application domains like computer
vision (CV), and natural language processing (NLP). Both
CV and NLP benefit from a unifying input format (images
and text respectively), which permits fully shared model
architectures for convenient knowledge transfer. In particular,
foundational models [11] are trained on massive datasets such
as ImageNet [12] and CommonCrawl [13] to derive general
representational knowledge, which can be specialized to di-
verse downstream tasks, such as semantic segmentation [14]
in CV, and sentiment analysis [15] in NLP. Foundational
models improves learning efficiency and model robustness of
downstream tasks, especially for limited training data [15].

Biologically, the human somatosensory system shares sim-
ilar neural mechanisms with the visual cortex responsible
for processing spatial features [16]. This implies that tactile
properties such as texture are largely descriptions of surface
spatial properties [17], motivating the question of whether a
vision foundational model could be exploited to tackle the
aforementioned challenges in TRL. Specifically, we investigate
the following:
• Can vision models be agnostic to data from heteroge-

neous tactile sensors?
• Can vision foundational models improve model perfor-

mance and robustness for TRL?
• Can vision architecture facilitate efficient knowledge

transfer between downstream learning tasks and models
trained on different sensor data?

In this work, we present a unified approach to address the
above questions. We first present the use of tactile images as a
simple unifying data format for heterogeneous tactile sensory
outputs, to encode them as spatial features. This recasts TRL as
a vision task, but with different input image sizes for different
sensors. We adopt convolutional models [18] as the fully
shared architecture for all sensors, exploiting convolution’s
agnosticity to image sizes.

The above construct enables efficient knowledge transfer in
multiple ways. First, we show that a foundational vision model
pre-trained on natural images can be directly applied to tactile
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learning tasks by simply performing least square regression
to the last layer, providing evidence on the connection be-
tween visual and tactile perception in a non-biological system.
Second, the foundational model can also be fine-tuned into
tactile representation models with improved performance and
robustness. In particular, we leverage data augmentation to
counteract the limited tactile data during fine-tuning. Lastly,
we demonstrate that the fine-tuned tactile representation model
retains general features to allow cross-task and cross-sensor
transfer.

To evaluate our proposed approach, we consider multiple
benchmark tasks including standard material classification,
continual learning for material classification and detection
of fabric composition. We specifically test on data collected
from four different sensors, with different data collection
procedures, to demonstrate the general applicability of our
approach.
Contributions. Our key contributions are summarized below:
• We extensively investigate on the feasibility, effective-

ness, efficiency and robustness of using a vision founda-
tional model for TRL. We use tactile images as a unified
model input transformed from any tactile sensors.

• We introduce a new evaluation benchmarks for tactile
learning, namely fabric composition detection.

• We contribute two new tactile datasets, including a ma-
terial classification dataset using GelSight sensor and a
fabric composition dataset using Contactile sensor.

• Empirically, we demonstrate that our proposed approach
learns robust models for all sensors evaluated and out-
performs baseline models tailored to specific sensors.

II. PRELIMINARIES AND RELATED WORK

We present three task settings to support the comprehensive
evaluation of our proposed approach. The first two tasks are
standard benchmarks for TRL while the third one is a novel
task of composition detection task. We also review relevant
works.

A. Tactile Representation Learning Tasks

Material Classification. This is a common benchmark for
TRL [e.g. 8, 19, 20, 21, 22, 23, 24]. Similar to image
classification, material classification determines the source
material measured by a tactile sensor, from a finite number
of classes. For example, early research involved classification
of the textural information gathered via sliding an electret
microphone across the surface of materials [25]. The task
remains a standard benchmark amid the rapid development
of different sensor designs.

A natural extension to standard material classification in-
vestigates the learned model’s robustness to out-of-distribution
data. This includes varying data length and the moving speed
of the tactile sensor (as controlled by a robot). For example,
[26] achieved improved robustness to the sensor’s movement
speed via additional sensing modalities. [8] also proposed a
customized spiking neural network to reduce the data length
needed for classification.

Continual Learning for New Materials. For real-world
applications, robots are expected to continuously learn and
adapt to novel environments. This also applies to TRL and
was investigated in [27, 28], where robots learn new objects
continuously by touch. In this work, we similarly extend ma-
terial classification to the continual learning (CL) [29] setting.
Formally, let D = {B1, B2, . . . , BT } be a data sequence with
Bt denoting the data for material t. We wish to design a CL
algorithm Alg(·) in the form of

(ft, Mt) = Alg(Bt, ft−1,Mt−1), (1)

where ft is the current classification model after learning
the novel material t. ft should be capable of classifying
all materials observed so far (i.e., B1 through Bt). A small
memory buffer M is allowed to store data about previous
materials to mitigate model forgetting. Mt denotes the current
content of the memory buffer.

Intuitively, the CL algorithm Alg(·) must learn each material
sequentially. It also cannot access training data for previous
materials except for those stored in the memory buffer. The
algorithm is thus forced to learn new materials on the fly
without forgetting its existing knowledge. In contrast, standard
material classification learns all materials in D concurrently
and with unlimited access to all data. CL thus represents a
more challenging and realistic benchmark.
Fabric Composition Detection. We introduce a new eval-
uation benchmark for TRL. Concretely, we design a fine-
grained fabric composition detection task, in which the learned
tactile model must predict the constituents of a specific fabric
material, instead of simply identifying it. This task serves as
a more challenging benchmark compared to standard material
classification. It also allows us to investigate knowledge trans-
fer between sensors and tasks (e.g., from material classification
to constituents detection). We will describe the new dataset
collected for this task in Sec. III.

B. Existing Methods

There exists a wide range of tactile sensor designs leverag-
ing various sensing modalities, including strain gauges [24],
piezo-resistive layers [30], accelerometers [31], capaci-
tive [32], optical [5, 33] and those combining multiple sensing
mechanisms [34, 35]. Most tactile learning methods tailor
their respective model architectures and learning algorithms to
the specific sensors used [e.g., 8, 23, 24, 36]. These existing
approaches learn sensor-specific mappings from raw sensor
output to some latent representation, and adjust the model
size based on size of sensor output. These tailored decisions
inevitably lead to a siloed state for TRL: the developed models
can’t be easily reused for different sensors, even when the
desired ML task remains identical.

[10] partially addresses the above issues by learning a
shared latent representation for two different sensors. This
approach demonstrates improved performance compared to
independently learning each sensor’s data. However, it must
still learn sensor-specific mappings from raw data to the shared
representation, thus limiting its reuse potential for additional



sensors. In contrast, our proposed approach standardises the
transformation to map any raw sensor data to tactile images,
to be processed by a fully shared ML model. As we will
demonstrate in our experiments, our approach grants more
flexibility towards knowledge transfer.

III. SENSORS AND DATASETS

We present the sensors and the associated datasets consid-
ered in this work. They are intended to validate the general
applicability of our approach, and to contextualize the chal-
lenge posed by heterogeneous sensors. Each dataset is used
for one or more learning tasks described in Sec. II-A.
RoboSkin. Roboskin is a capactive sensor designed for
iCub [32]. Taunyazov et al. [36] collected a material classifi-
cation dataset using the RoboSkin on the iCub robot forearm,
sweeping across multiple materials without strict control of
velocity and exerted forces. This public dataset contains 20
different materials with 50 samples in each class. Each sample
contains 75 sensor readings.
BioTac. SynTouch BioTac® is a multi-modal tactile sensor
using fluid pressure sensor and thermistor [37]. Gao et al.
[10] released a material classification dataset using the BioTac
sensor fitted as an extended end-effector on a KUKA LBR
iiwa 14 robot arm, sliding laterally across different materials
with controlled speed and contact force. BioTac-20 dataset
contains the same 20 materials as the RoboSkin dataset with
50 samples in each class. Each sample contains 400 readings.
A larger BioTac-50 dataset was later released.

We contribute two new datasets using alternative sensors.
We will release both datasets publicly to support future re-
search in the community.
GelSight. Gelsight is a camera-based sensor producing images
of the contact surface, showing surface geometry and defor-
mation with a soft elastomer [5]. Each reading is an image
of 480× 640. A material classification dataset consists of 45
materials with 50 samples in each class. As the elastomer is
vulnerable to abrasion from sliding motion, data is collected
by rolling the sensor locally on material surfaces. The sensor,
mounted on a KUKA LBR iiwa 14 robot arm, touches the
material surface from above with a 1N force threshold. The
sensor is then rotated clockwise by 1 degree, anticlockwise
by 2 degrees, and finally clockwise by 1 degree back to the
centre position (illustrated in Fig. 1a).
Contactile. Contactile® sensor uses a soft, silicone array based
on PapillArray [7]. The sensor measures deflection, force and
vibration. We collect the data using two protocols. Protocol
1 is identical to that of BioTac dataset. In Protocol 2, the
sensor is handheld and slid across materials casually with
different contact forces, speeds and along different directions,
to mimic more realistic and natural movements. The dataset
contains samples collected from 32 fabrics, each consisting
of possible 6 constituent materials: Linen, Viscose, Cotton,
Wool, Polyester and Elastane (see Tab. I for examples). 40
and 10 samples per material are collected for Protocols 1 and
2 respectively. The collection setup is illustrated in Figs. 1b
and 1c.

(a) GelSight

(b) BioTac, RoboSkin,
Contactile (c) Setup for Contactile Protocol 1

Fig. 1: (a) and (b) are illustrations of tactile data collection
process for different sensors. (c) is the robot setup for Protocol
1 in Contactile data collection.

TABLE I: Fabric examples and their composition materials

Material Image % by mass
Linen Viscose Cotton Wool Polyester

Cotton-Linen 45 0 55 0 0

Poplin 0 0 20 0 80

Drill Stretch 0 0 100 0 0

Felt 0 65 0 35 0

IV. METHOD

We present a unified approach to tackle heterogeneous
sensors and efficient knowledge transfer in TRL. Our approach
relies on a unifying format for different sensor data, and
exploits convolution’s agnosticiity to input size to enable fully
shared models. These fully shared models in turn enables
convenient knowledge transfer. We also discuss data aug-
mentations to counteract limited tactile training data. Lastly,
we discuss a continual tactile learning approach as a direct
application of knowledge transfer.

A. Tactile Images and Convolutional Architectures

We use simple transformations to convert data generated by
various sensors into 2D images, which serves as the unified
input format for the subsequent ML models. Specifically,
tactile images aims to transform tactile sensory output into an
encoding of the global geometry for the contact surface. This
transformation is inspired by the processing similarities be-
tween the human visual cortex and somatosensory system [16],
and captures the intuition that significant tactile properties are
fundamentally spatial [17].

Camera-based sensors such as GelSight directly capture
global surface geometry as images and can be used as model



input directly. However, non-camera-based sensors typically
have sparse sensing points that only produce localized signals
about the contact surface. To better encode the global surface
geometry, we thus require more local samples that span across
the contact surface. This could be conveniently achieved by
concatenating consecutive vectors from the tactile data stream,
as the sensor slides over the contact surface. Formally, let
S = {s1, s2, . . . , sT } be the data stream produced by a
sensor sliding across a surface, where st ∈ Rn is a single
reading from the sensor. We define a tactile image as a matrix
Im(S) = [sj , sj+1, . . . , sk] for some constant j, k. Intuitively,
Im(S) leverage the temporal dimension of tactile data stream
to better encode global surface properties (see also Fig. 2 for
an illustration).

Fig. 2: Tactile Image
processing for non-
camera-based sensors.

We note that tactile images
of different sensors still have
different dimensions. To achieve
fully shared models for knowl-
edge transfer, we thus adopt con-
volutional architectures such as
ResNet [38], since convolution
does not require a fixed input size.
ResNet is also a representative
state-of-the-art model for process-
ing spatial input, including the sur-
face geometry encoded in tactile
images.

Fig. 3: Tactile image representations for the BioTac, RoboSkin
and GelSight sensors for two material classes.

B. Model Training

With tactile images and our chosen model architecture,
we effectively recast TRL as a vision task. For training, we
minimise the empirical cross-entropy loss

argmin
f

∑
(x,y)∈D

`ce(f(x), y) (2)

where f is the model and `ce is the cross-entropy loss. D
denotes the dataset containing labeled tactile images (x, y).

Crucially, we can initialize f with a pre-trained model to
enable knowledge transfer. In particular, we may interpret TRL

as a downstream task for a vision foundational model on
general spatial features. In our experiments, we will demon-
strate that a foundational model trained on natural images
already robustly encodes the general features required for
tactile images.
Data Augmentation. As discussed earlier, tactile datasets are
typically small due to the high cost of data collection due
the interactivity of the modality and significant wear and tear.
Data augmentation is therefore important to mitigate model
overfitting, especially for larger architectures like ResNet.
We propose to directly apply standard CV augmentations:
resizing, cropping, flipping and jittering. We observe that each
of these augmentations encodes a meaningful variation to the
data collection process, even for non-camera-based sensors.
For instance, cropping the tactile images encodes varying the
duration of robot motion during data collection. Tab. II lists
all chosen augmentations and their interpretation.

TABLE II: Tactile images augmentations and their physical
interpretation

Augmentation Technique Physical Interpretation

Flipping (along data axis) Reversing the direction of robot motion.
Resizing (along temporal axis) Vary the speed of robot motion.
Cropping (along temporal axis) Vary the duration of robot motion.
Jittering Simulate sensor noise and drift.

The chosen augmentations are readily accessible from com-
mon deep learning frameworks [39] and may be directly ap-
plied. We will demonstrate empirically that the augmentations
is crucial to model robustness.

C. Continual Tactile Learning

As robots are increasingly expected to work in unstructured
environments, continual learning of unordered new percepts
is important. Sec. II-A introduced continual learning (CL)
of new materials as a natural extension to standard material
classification. The two key challenges for CL are: 1) whether
robots could learn about new materials on the fly, and 2)
continuous learning does not cause catastrophic forgetting of
current knowledge [40, 41].

We adopt schedule-robust online continual learning
(SCROLL) [42] to tackle CL of new materials. We choose
SCROLL because the method leverages pre-trained models
for efficient knowledge transfer, thus allowing new materials
to be learned with limited interaction. In addition, SCROLL is
robust to the schedule under which the data is presented (e.g.,
the order in which each material is learned), a crucial property
to ensure model reliability in real-world situations.

Using the notations introduced in Eq. (1), we characterize
SCROLL as a two-phase process. Given a suitable pre-trained
embedding model ψ, we first learn an online linear classifier
φt via recursive least squares [43] as novel material data Bt is
observed. We then fine-tune the composite model ft = ψ ◦φt
using the current memory buffer Mt to yield f∗t . Both ft and
f∗t are valid CL models for all data observed so far, with f∗t
having a fine-tuned representation based on the observed data.



SCROLL uses exemplar selection [44] for updating Mt. The
overall algorithm is presented in Alg. 1,

Algorithm 1 SCROLL (incremental)

Initialization: Buffer M0 = ∅, data statistics c0y = 0, A0 = 0

Input: Embedding model ψ, next data batch Bt, current buffer
Mt−1, current data statistics ct−1

y , At−1

cty, At = RecursiveLeastSquare(ct−1
y , At−1)

φt = RidgeRegressor(cty, At)
ft = φt ◦ ψ
Mt = SelectExemplar(Mt−1, Bt, ψ)
f∗
t = FineTune(ft,Mt)

Return cty, At,Mt, ft and f∗
t

where cy, A are necessary data statistics for recursive least
squares (see [42] for further details on SCROLL).

V. EXPERIMENTS

We evaluate our approach extensively across a wide variety
of sensors and tasks, as introduced in Sec. II and III. Our
experiments address the following questions:
• Is our approach generally applicable to heterogeneous

tasks and sensors? How does our approach compared to
sensor-specific methods?

• What are the effects of tactile image augmentation?
• Does our approach allow efficient knowledge transfer?

What are the effects of knowledge transfer?
Data Pre-Processing. Following Sec. IV-A, we transform
BioTac data into 19×400 images by stacking 400 consecutive
vectors. This corresponds to 4 seconds of data. RoboSkin
data is transformed into 60 × 75 images, corresponding to
1.5 seconds of data. Lastly, Contactile data is transformed
into 27 × 599 images, which is 6 seconds of data. We note
that the exact size for the temporal dimension is not crucial,
since we will also leverage random cropping and resizing
along the temporal dimension for data augmentation. Since
these tactile images only have a single channel, the channel
is repeated three times to match the input dimension for the
vision foundational model used in the experiments. All tactile
images and GelSight data is normalized to the range of [−1, 1].
Model Architecture and Pre-training. We choose a ResNet-
18 pre-trained on MetaDataset [45] as our foundational vision
model. It is chosen for its balanced accuracy and computa-
tional efficiency. We emphasize that other foundational models
may be easily chosen given the trade-off between accuracy and
efficiency. We also highlight all experiments use the identical
foundational model without any modification, as our approach
allows fully shared models.

A. Standard Material Classification

We compare our approach with baseline methods on stan-
dard material classification using BioTac-20, RoboSkin and
GelSight datasets. We highlight that the baselines are specif-
ically tailored to the BioTac or RoboSkin sensors, whilst our
model is generic.

TABLE III: Material Classification Accuracy (%). Numbers
for baseline methods are originally reported in [8]. Pre-train
denotes initialization with the foundational vision model.

Method BioTac-20 RoboSkin GelSight

SVM 94.2± 0.7 50.5± 5.6 n.a
SVM (spikes) 93.5± 1.5 63.3± 1.8 n.a
Conv-LSTM 94.5± 1.5 93.5± 0.5 n.a
SNN 94.6± 1.3 92.2± 0.5 n.a

Least Square w/ Pre-train 93.8± 1.2 84.8± 1.3 67.1± 0.8
ResNet (ours) 98.0± 0.3 95.0± 0.6 92.9± 0.3
ResNet w/ Pre-train (ours) 98.9± 0.2 96.0± 0.5 95.1± 0.3

Model Details. Our model is trained for 100 epochs using
stochastic gradient descent (SGD). A validation set is em-
ployed to schedule the learning rate, mitigating performance
plateaus. An initial learning rate of 0.01 is chosen empirically,
with a momentum of 0.9 and a weight decay of 0.0001. 5-fold
cross validation is performed for all experiments.
Baseline Methods. We compare our approach to a diverse set
of methods investigated in [8], including a spiking neural net-
work (SNN), LSTM, regular support vector machine (SVM)
and spike-encoded SVM (SVM Spike).

Table III reports the classification accuracy for all evaluated
methods. Our generic ResNet outperforms the baselines by
more than 4%, suggesting the viability of our tactile image
approach. In addition, the results clearly shows that fine-tuning
from the foundational model is more advantageous than ran-
dom initialization. This indicates positive knowledge transfer
from the pre-trained model and improved generalization. This
is especially visible for the GelSight dataset owing to the
imbalance between the small size of the dataset and the large
input dimension.

Pre-training also noticeably improves learning efficiency,
as reported in Fig. 4. For both BioTac-20 and RoboSkin
datasets, transferring from the foundational model (i.e., with
pre-training) achieves higher accuracy with fewer iterations
over the training data. Learning efficiency is a desirable prop-
erty for robots requiring fast adaptation to novel environments.
Foundational Models and Tactile Images. To better under-
stand the connection between our foundational model and
tactile images, we introduce another baseline in Tab. III
denoted by “Least Square”. This baseline encodes all tac-
tile images into fixed representations using the pre-trained
ResNet, and only learns a least-squares classifier over the
fixed representation. The accuracy of this baseline thus directly
reflects the usefulness of the pre-trained model towards tactile
images. Surprisingly, the results show that the foundational
vision model trained from natural images already contains
the general features required for tactile texture representation,
despite the apparent distributional shift. This provides direct
support to the connection between visual and tactile percep-
tion, resembling the similarities between the human visual
cortex and somatosensory system. The results also provide
empirical justification for our choice of tactile images as model
input.
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Fig. 4: Test Accuracy over the first 20 epochs for both BioTac-
20 (red) and RoboSkin 20 (blue), with (solid) and without
(dashed) pre-training.

B. Augmentation and Model Robustness

As noted in Sec. IV-B, data augmentations applied to tactile
images may be interpreted as diversifying the conditions of
data collection. This is crucial for tactile datasets as they are
generally expensive to collect. We investigate the effects of
augmentation in the following experiments.
Robustness to Sampling Length. For material classification,
it is desirable to shorten the sampling length without sacrifice
to accuracy. This corresponds to classifying randomly cropped
tactile images in our formulation. It was also investigated in
[8] as a strength of spiking neural architecture. In Fig. 5,
we investigate how random cropping affects classification
accuracy over varying data length, and compare our approach
to previous methods.
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(b) RoboSkin-20

Fig. 5: Test accuracies of our approach with and without ran-
dom cropping augmentations for varying data length. Baseline
methods included for comparison.

The results clearly show that our model with augmenta-
tion outperforms the previous methods, achieving higher test
accuracy with less data required. For both datasets, ResNet
with augmentation is able to accurately classify the materials
with about 0.3 seconds of sensor data. As the data length
increases, the test accuracy rapidly increases and remains
high, suggesting that our model could efficiently accumulate
information over short duration while maintaining robustness
over long run. In addition, Fig. 5 shows that augmentation

is crucial for robust performance. The same model trained
without augmentation performed the worst among all methods,
suggesting overfitting to the original data length and less robust
features learned.
Robustness to Movement Speed. While some tactile datasets
are collected under a tightly controlled robot motion, it is
preferable that the learned model generalizes to more varied
motions. We simulate different speeds of the robot’s sliding
motion during tactile sensing by sub-sampling the test set
data along the temporal axis, and investigate the effects of
augmentation on this out-of-distribution test set.

Fig. 6 shows that the model trained with random resizing
augmentation is robust against varying robot speed, achiev-
ing consistent accuracy across different movement speed. In
contrast, the model with no augmentation generalized poorly
even with slight speed deviation. The figure also shows that
random cropping improves model robustness against varying
movement speed.
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Fig. 6: The effects of augmentation with respect to varying
robot movement speed during tactile sensing. X-axis denotes
the multiples of the original robot speed.

Robustness to Sensor Noise. Similar to the previous ex-
periment, we construct another out-of-distribution test set by
injecting random sensor noise. Fig. 7 and evaluates the effects
of augmentations.
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Fig. 7: The effect on test accuracy with respect to sensor noise.
X-axis denotes maximum noise level added to tactile images.

Fig. 7 shows that model trained without random jittering
augmentation generalizes poorly to noisy data, especially on
BioTac dataset. This is due to the BioTac data being collected
under a strict condition, including fixed force and movement
speed. The model trained on non-augmented BioTac data thus
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Fig. 8: CL performance across all BioTac-50, RoboSkin-20, and GelSight-45 datasets, for varying buffer sizes. Accuracy from
supervised upper bound and ridge regression are shown to illustrate the performance changes associated with adaptation. With
increasing memory buffer, CL achieves better test accuracy and narrows the gap against standard supervised learning.

overfits to the homogeneous data and lack robustness. In
contrast, RoboSkin data contains more diverse samples since it
is collected without strict speed or force control. As reflected
in Fig. 7, the non-augmented model trained on RoboSkin data
is therefore naturally robust to a low level of sensor noise.
However, as the noise level increases, the test accuracy of all
non-augmented models still deteriorate rapidly.

Fig. 7 also indicates that the model trained with augmen-
tation can significant sensor noise, with the noise level of 0.5
representing a potentially 50% deviation from the intended
value range. At this level, the augmented model still retains a
test accuracy of 80% for RoboSkin and 73% for BioTac-50.
Lastly, we observe that even for the original test set (i.e, noise
level = 0), the augmented model still outperforms the non-
augmented version, suggesting more robust features learned
with augmentation.

Overall, we have demonstrated that standard CV augmen-
tations can be directly applied to tactile images to appreciably
boost model robustness in various aspects, including sampling
length, movement speed and sensor noise. As several of our
experiments relied on simulated test data, we will further
demonstrate the usefulness of augmentation with real out-of-
distribution data in Sec. V-D.

C. Continual Tactile Representation Learning

As described in Sec. II-A, we cast material classification
in a CL setting, which requires our model to learn each ma-
terial sequentially. CL enables robots to continuously acquire
new tactile experiences, without having to perform expensive
retraining from scratch.
Model Detail. The same foundational vision model is used
as the embedding model for Alg. 1. During fine-tuning with
memory buffer Mt, we adopt data augmentation and a cosine
learning schedule [46] to mitigate overfitting. For all experi-
ments, we perform a 5-fold cross-validation.

Fig. 8 shows the CL performance for each dataset over
different memory buffer sizes. We report the performance of
ft and the fine-tuned f∗t . We also include the test accuracy
of standard material classification as a performance reference.

Note that ft obtained via recursive least squares is equivalent
to the least-squares baseline discussed in Sec. V-A. Thanks
to the foundational vision model, ft thus guarantees a robust
minimum performance level for CL (see red lines in Fig. 8).
f∗t is obtained by adapting ft with the memory buffer. Its
performance improves with larger memory buffers, closing
the gap with standard material classification. For BioTac and
RoboSkin particularly, the CL performance is comparable with
standard supervised learning, using a moderate memory buffer
of 1500 and 600 respectively. The memory buffer required
only represents a fraction of the original datasets, suggesting
that our approach also allows efficient and accurate CL of new
materials with limited memory requirements.

D. Fabric Composition Detection

Introduced in Sec. II-A, fabric composition detection in-
volves predicting the presence of six constituent materials, in-
cluding Linen, Viscose, Cotton, Wool, Polyester and Elastane,
in different fabrics. A single model is learned to detect the
presence of all constituents concurrently, with one prediction
head for each constituent. This task is more challenging than
standard material classification, due to the “similar feels”
of different fabrics. The physical weave of a fabric also
contributes to its feel, adding a potential confounding factor
for the task.

For this task, the data is collected using Contactile sensor.
As discussed in Sec. III, we deliberately used two protocols
for data collection. The training set is collected using strict
force and velocity control while the test set is collected with
more natural movements. The test set thus presents a more
realistic setting and a clear domain shift with respect to the
training data.
Model Details. The training procedure is similar to that used
for standard material classification. The only change is that the
number of training epochs is reduced from 100 to 50. Data
augmentations are applied to model training when specified.
For evaluation, we consider the average classification score for
all constituents materials. For instance, Felt contains Viscose
and Wool. The learned model only achieves a score of 1 for



predicting precisely the two constituents. Any false positive or
false negative detection will decrease the score by 1

6 .
Tab. IV shows the average classification score for different

model setups. We investigate both knowledge transfer from
foundational vision model and model pre-trained on other
sensors. We also study the effects of data augmentation.

TABLE IV: Fabric Composition Detection Accuracy (%)

Model Test Accuracy Score

Least Squares w/ vision Pre-train 74.2
Least Squares w/ BioTac Pre-Train 76.1

ResNet 76.3
ResNet + Augmentation 78.9
ResNet + Augmentation (BioTac Pre-train) 80.6

In Tab. IV, we again leverages least-squares classifier over
a fixed representation to quantify the effectiveness of a pre-
trained model. We see that directly applying the foundational
vision model achieves 74.2%, while applying the BioTac
model obtained in Sec. V-A achieves 76.1%. The result is
our first demonstration of successful cross-task and cross-
sensor transfer: the BioTac model trained on standard material
classification can be directly applied to Contactile data for
fabric composition detection. This result demonstrates the
general applicability of our approach, and its ability for robust
and flexible knowledge transfer.

Tab. IV further demonstrates the usefulness of data aug-
mentations on real out-of-distribution data, with augmentation
contributes over 2% in test accuracy compared to the non-
augmented model. The results validate our physical inter-
pretations for the applied augmentations, showing that the
augmented model is indeed more robust against more varied
motions. From another perspective, we may also leverage
the synthetic data produced by augmentation to reduce data
collection load. This is important if a robot is only allowed
limited (exploratory) interaction with environments. Lastly, we
remark that the best model is obtained by combining both
knowledge transfer and augmentation, achieving 80.6% in test
accuracy.

E. Observations on the Learned Representation

Results from previous sections suggest robust knowledge
transfer across sensors despite the varied sensing mechanisms
and data format. We hypothesize that this could be a result
of a learned invariant descriptor of the tactile properties
of the contact surfaces. Since the processing of texture in
the human somatosensory cortex is a relatively lower-level
function, we are thus interested in understanding if the lower-
level abstraction in the learned model recovers similar latent
representation for diverse sensor data.

Fig. 9 shows the feature activation for different sensors us-
ing Deep Dream technique [47]. This qualitative visualization
of the learned features shows that feature activation generated
right after the first block for 3 ResNets, each fine-tuned on
a separate tactile dataset in standard material classification.

All 3 feature activation maps have high resemblance of
one another, suggesting that learned model indeed recovers
consistent representation of tactile properties despite diverse
sensing mechanisms. This further supports the knowledge
transferrability between different sensors and related tasks.

(a) Foundational Model (b) GelSight

(c) BioTac-50 (d) RoboSkin

Fig. 9: Feature activation after block 1 of ResNet. (a) Original
feature activation from foundational CV model. (b), (c), (d)
Feature activation after fine-tuning with specific sensor data.

VI. CONCLUSION

In this work, we presented a foundational model approach
to tactile representation learning. In contrast to sensor-specific
tactile models, our approach is characterized by a standardized
ML pipeline, including a unifying data format for diverse
tactile data, fully shared model architecture and learning
techniques, all of which are key requirements for founda-
tional models. Further, the experiment results suggest that
our approach not only outperforms sensor-specific models,
but crucially allows efficient knowledge transfer between
models trained on different sensors and tasks, satisfying the
remaining property for foundational models. In particular,
we demonstrated the connection between visual and tactile
perception, showing that foundational vision models trained on
natural images can be a readily accessible source of knowledge
for tactile representation learning. This also allows us to
effectively perform, with the same unified model, downstream
tasks which were previously achieved with an array of methods
in the literature. We believe that this investigation thus con-
tributes a robust and general approach to tactile representation
learning and provides a strong baseline for future research.
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