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Abstract—Classification of non-tumorous facial 

pigmentation disorders is an important but overlooked 

problem. Recently, a voting-based probabilistic linear 

discriminant analysis (V-PLDA) method was developed to 

address this problem by extracting hand-craft features 

from a given image set of rather small size, with limited 

classification accuracy. In this paper, we propose an 

improved Synthetic Minority Over-sampling Technique 

(improved SMOTE) with several parameters tuned to fully 

utilize the available images. Moreover, transfer learning is 

applied to reduce the data size requirement of the deep 

learning model. By combining the improved SMOTE and 

transfer learning, a classification accuracy gain (10%) is 

attained compared to the state-of-the-art V-PLDA method. 
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I. INTRODUCTION  

Biomedical image analysis allows rapid automatic 
classification and diagnosis which can accelerate medical 
research and clinical practices [1, 2]. In dermatology, though 
significant researches have been achieved in automatic 
classification of tumorous facial pigmentation disorders using 
image processing and analysis [3-5], much remains to be 
explored in dealing with non-tumorous facial pigmentation 
disorders. Unlike those of its tumorous counterpart, non-
tumorous pigmentation disorders have features varying 
significantly in shapes, sizes and colors even within the same 
class [6]. Hence, methods developed for tumorous 
pigmentation disorders may not be directly applied to solve 
the classification of non-tumorous pigmentations. Moreover, 
it is important to develop an automatic classification process 
for non-tumorous pigmentation disorders as they can reveal 
mild health conditions which are otherwise unnoticeable [7].  

Recently, a voting-based probabilistic linear discriminant 
analysis (V-PLDA) method was developed to address the 
classification of non-tumorous pigmentation disorders [6]. 
Proper features reflecting the color and texture are extracted 
and fed into the V-PLDA model. However, exhaustively 
attempting all combinations of features would require great 
human effort. The classification accuracy is also limited by 
the small number of accessible pigmentation images provided 
by the dermatologists.  

In this paper, we address the classification of non-
tumorous pigmentation disorders using an improved 
Synthetic Minority Over-Sampling Technique (improved 
SMOTE) in conjunction with transfer learning. SMOTE [8] 

is an over-sampling method which originally aims to deal 
with imbalanced datasets. It is improved and utilized to 
augment the small image set in our experiments on the 
classification of non-tumorous pigmentation disorders. 
Transfer learning can be employed to utilize deep learning for 
a small-size dataset as it uses pre-trained models that have 
been previously trained over a large dataset [9, 10]. The deep 
neural network can extract generic features instead of hand-
craft features with the connection of numerous layers of 
neurons. With the combination of the improved SMOTE and 
transfer learning, a significant improvement in the overall 
classification result (10% increase in accuracy) for non-
tumorous facial pigmentation is achieved for the same image 
set used in [6].  

The contributions made in this paper are mainly in the 
improved SMOTE which are summarized as followed: i) 
Instead of interpolating two samples using a random weight 
between 0 and 1, the range of the weight is optimized to 
obtain synthesized image sets with more diversity; ii)The 
effect on accuracy by synthesized image sets of different sizes 
are compared, and the size of the augmented input image set 
is adjusted to improve the classification results; iii) A 
redundancy reduction scheme is developed such that the 
similarity between the generated images and the original 
images is assessed using Structural Similarity index (SSIM 
index) [11, 12], and images having higher similarity with the 
original dataset are deleted to avoid redundancy. 

II. METHODOLOGY 

 A workflow of the proposed method combining the 
improved SMOTE and transfer learning for the classification 
of non-tumorous pigmentation disorders is shown in Fig.1. As 
described in Fig.1, the improved SMOTE is implemented to 
produce more suitable and effective training images. Transfer 
learning with the base model of Inception-ResNet-v2 [13] is 
applied to exploit deep learning on small dataset to make full 
use of the limited image set. The combination of two 
techniques turns out to be effective.  

 

Fig. 1. Workflow of the proposed mrthod 

 

 



A. SMOTE 

1) Original SMOTE 

SMOTE is an oversampling approach initially invented 

to process imbalanced datasets by enlarging the minority 

class to balance the training samples in each class. In this 

research, it is employed to augment images in every class to 

fulfill the requirement of deep neural networks for large 

dataset size. 

SMOTE generates a new sample by taking a random 
point along the line joining two adjacent samples [8]. For 
every sample s in a class, N out of its k nearest neighbor (KNN) 
within the same class are randomly chosen with KNN 
determined using Euclidean distance. One new sample is 
generated by interpolating the original sample s and one of 
the chosen neighbors pixel by pixel as expressed as (1): 

 𝑠′ = 𝑠 + 𝑤 ∙ (𝑠𝑛𝑛 − 𝑠) (1) 

which is equivalent to 

 𝑠′ = (1 − 𝑤) ∙ 𝑠 + 𝑤 ∙ 𝑠𝑛𝑛 (2) 

It is seen from (2) that a new image 𝑠′ is generated from 
the original sample s and the chosen nearest neighbor 𝑠𝑛𝑛 
based on a weight coefficient w. s and 𝑠𝑛𝑛 can be referred as 
the parent images of 𝑠′. Every original sample produces N 
new samples with its N nearest neighbors. With the process 
repeated using every sample in the class, a set of new images 
with N times the size of original image sets in each class is 
synthesized and N is referred to as the data augmentation 
multiplier in the SMOTE process.  

In the original settings [8], k is set to be 5 with N set to be 
2. The weight coefficient w is a random number drawn from 
a uniform distribution between 0 and 1. The improved 
SMOTE is to explore different parameter settings as follows.  

2) Improved SMOTE 

The improved SMOTE enhances the original SMOTE by 
fine-tuning the augmentation process. This includes setting 
the range for the randomly selected weight coefficient, 
optimizing the data augmentation multiplier and removing 
redundant images in the enlarged training set. 

a) Weight Coefficient w 

In this method, the effect of the range of the weight 
coefficient on the training process is explored. When the 
weight coefficient is extremely close to 0 or 1, the synthesized 
images will be highly similar to one of their parent images. 
This will lead to overfitting and hence is not beneficial for 
extracting generic features from the augmented image set. 
Due to the large intra-class variance of the dataset, redundant 
images may cause the classification machine to be biased 
towards certain images. However, if the weight coefficients 
are restrained to a small range, the variations in the generated 
images will be limited, and the randomness of the SMOTE 
algorithm will be undermined. The aim is to find a satisfying 
range for the weight coefficient which can produce the best 
result in terms of classification accuracy. 

b) Data augmentation multiplier N 

In the original SMOTE [8], N=2 was used to generate 
synthesized data. In this paper, experiments with datasets 
generated using different data augmentation multipliers N  are 
performed. With a larger dataset, the classifier is able to 
extract more information to accomplish a higher accuracy. 
However, due to the small size of the original dataset, as the 
data augmentation multiplier N increases, some of the newly 
generated images are redundant and cannot offer additional 

information. With the above consideration, experiments with 
N=2, N=3 and N=4 are carried out respectively when k is 
fixed at 5.   

c) SSIM index-assisted redundancy reduction  

To ensure the variety in the training images, the 
similarities between newly generated images and original 
images are assessed to prevent new images from being too 
similar to the original images. Those extremely similar 
images will cause overfitting in training and hence 
synthesized images with very high similarity to the original 
images will be removed. 

The measurement criteria adopted is Structural Similarity 
index (SSIM index) [11, 12]. It is originally used to assess the 
quality of digital videos and images projected onto a screen 

by comparing the luminance(l)， contrast(c), and structure(s) 

of the projected image and that of the original image. The 
adopted SSIM index for two images represented by x and y, 
is expressed in (3) [11, 12]. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
  (3) 

with 𝜇𝑥: average value of x;  

𝜇𝑦: average value of y; 

𝜎𝑥: variance of x; 

𝜎𝑦: variance of y; 

𝜎𝑥𝑦: covariance of x and y; 

𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 , 

where 𝐿 = 2#𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 − 1, 𝑘1 = 0.01 and 𝑘2 = 0.03. 
The SSIM indexes of R, G, B components of the images 

are calculated separately, and the average value of them is 

used as the SSIM index between two images. For each 

newly-generated image, its SSIM indexes against all original 

images are calculated, out of which the highest SSIM index 

(HSI) is taken. The HSI of every synthesized image is sorted 

and the 10 images with the highest HSI in each class are then 

excluded from the training set to reduce the redundancy 

during each training stage.  

B. Transfer learning with the pre-trained model Inception-

Resnet-v2 

Transfer learning is a method to reuse a pre-trained model 
on a new task by applying previously acquired knowledge to 
learn new knowledge. Since the cost of learning directly from 
the target dataset at the beginning is too high, it is better to 
utilize relevant generic features to assist in extracting new and 
more specific features as quickly as possible. In this paper, 
transfer learning is employed to apply a deep neural network 
that has already been trained on ImageNet to a relatively 
small dataset available to us. By taking advantages of the pre-
trained model as a feature extractor, the amount of images 
required by the deep neural network is significantly reduced. 

 Inception-Resnet-v2, which is a hybrid inception model 
with residual connections [13], is chosen as it is a state-of-art 
pre-trained model. Inception network has been demonstrated 
to achieve superb performance at a relatively low 
computational cost. With the introduction of residual 
connections, Inception-ResNet-v2 with deeper and denser 
layers has higher training speed than Inception architecture 
and degradation problem is also avoided [9]. The network has 
164 layers in depth and can classify images into 1000 object 
categories [13]. 



III. EXPERIMENT 

A. The original dataset 

This experiment concentrates on improving the accuracy 

of classification of five common types of non-tumorous 

facial pigmentation disorders based on a real-world image 

set consisting of 30 clinical images per class: freckles, 

lentigines, melasma, Hori’s nevus, and nevus of Ota [14]. 

Images of the whole facial region of patients are taken to 

crop out the areas containing fully or partially the region of 

interest (ROI). The cropped images are pre-processed to a 

consistent dimension of 100×100×3 for subsequent 

classifications. A representative image in each class is 

displayed in Fig.2. 

Fig. 2. Sample images from each class 

B. Enlarged dataset using improved SMOTE 

To assess the classification performance with different 
SMOTE parameter settings, several input datasets are 
prepared. During the generation process, the images are 
normalized to the same size (200×200×3) and stored in RGB 
image format for Euclidean distance measurement and the 
interpolation of the pixels storing information of the images. 

Six different ranges of the weight coefficient are chosen 
and experimented for comparison: 0-1(original), 0.1-0.9, 0.2-
0.8, 0.3-0.7, 0.4-0.6. 0.5. For the case of using a fixed number 
0.5, new images generated with the same two parent images 
are exactly the same. The repeated images are deleted from 
the image set. N is chosen to be 2 at all time in the weight 
coefficient comparison test. Some representative images 
synthesized using weight coefficients in large difference and 
their parent images from Hori’s nevus class are demonstrated 
below. 

Fig. 3. Sample images generated using different weight 

coefficients 

As shown in Fig.3, new image 28 is derived from original 

image 10 and 21 using weight coefficient 0.075, which is 

extremely close to 0. The HSI evaluated is 0.999. On the 

other hand, new image 87 is generated from original image 

29 and 24 using weight coefficient 0.449 and the HSI is 

0.921. To further illustrate the similarity between new 

images and the original images when different weight 

coefficients are used, the HSI ranges of images generated 

with different weight coefficient ranges are shown in Table 

I. Five classes are simplified by their capital letters: Freckles: 

F; Lentigines: L; Melasma: M; Hori’s nevus: H; Nevus of 

Ota: O. 

TABLE I.  HSI OF IMAGES USING DIFFERENT WEIGHT 

RANGE 

Weight 

coefficient 

range 

F L M H O 

0-1 0.876-

1.000 

0.794-

0.999 

0.863-

1.000 

0.908-

0.999 

0.883-

1.000 

0.1-0.9 0.900-

0.996 

0.918-

0.998 

0.840-

0.997 

0.889-

0.996 

0.849-

0.997 

0.2-0.8 0.898-

0.990 

0.897-

0.993 

0.864-

0.991 

0.822-

0.990 

0.859-

0.992 

0.3-0.7 0.891-

0.989 

0.826-

0.981 

0.860-

0.991 

0.875-

0.987 

0.850-

0.988 

0.4-0.6 0.853-

0.977 

0.834-

0.968 

0.872-

0.973 

0.816-

0.973 

0.859-

0.977 

0.5 0.856-

0.974 

0.826-

0.962 

0.849-

0.972 

0.821-

0.966 

0.840-

0.967 

 

It is clearly shown that when the weight coefficients 
range is amended to 0.1-0.9, there are no images which 
closely resemble the original images in the enlarged image set. 
Hence, 0.1-0.9 is chosen as the weight coefficient range in the 
subsequent experiments. 

Following this, N is varied for data augmentation 
multiplier comparison test. Image set with 90 new images in 
each class (N=3) and that with 120 images in each class (N=4) 
are obtained for training. Table II lists the HSI ranges of the 
image set generated using N=4. The 20 highest HSI and 10 
lowest HSI are tabulated. High degree of similarity is 
observed for the 10 highest HSI images. Hence, removing 
highly redundant images is necessary. 

TABLE II.  SELECTED HSI RANGE IN DATASET 

GENERATED USING N=4 

HSI F L M H O 

1st-

10th 

0.996-

0.998 

0.995-

0.997 

0.995-

0.997 

0.995-

0.998 

0.995-

0.999 

11th-

20th 

0.994-

0.996 

0.991-

0.995 

0.992-

0.994 

0.992-

0.995 

0.991-

0.995 

… … 

111th-

120th 

0.878-

0.935 

0.877-

0.915 

0.882-

0.905 

0.908-

0.924 

0.882-

0.899 

C. Experiment set-up 

As stated in section IIB, the pre-trained model used in 

this paper is Inception-Resnet-v2 [13]. During the model set-

up, the original images in each class are randomly allocated 

to ten subsamples for a ten-fold cross-validation test such 

that each subsample contains three images per class. In every 

validation process, one subsample is selected as the testing 

set and the images in the remaining nine subsamples are 

included in the training set. Subsequently, newly generated 

images except for those whose parent images are selected as 

testing images are added into the training set. In the 

redundancy reduction experiment, 10 images having the 

highest HSI among the remaining generated training images 

in each class are removed from the training set. Subsequently, 

a grid search using four-fold cross-validation within the 

training set is conducted for parameter selection and early 

stopping is triggered when constant validation performance 

is observed in 500 continuous iterations to prevent 

overfitting. Weights of the processing units in the network 

are randomly initialized with a Gaussian distribution of zero 

mean and a standard deviation of 0.001. The learning rate is 

refreshed with an exponential decay factor shown in (4), with 



α denoting the learning rate. The decay step is selected to be 

1000 [9]. 

𝛼𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 = 𝛼 × 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒
(

𝑠𝑡𝑒𝑝

𝑑𝑒𝑐𝑎𝑦 𝑠𝑡𝑒𝑝
)
  ( 4 ) 

In the ten-fold cross-validation, the validation process is 

repeated 10 times until all the subsamples are taken as the 

testing subsample once. The ten-fold cross-validation is 

performed independently 10 times with the images being 

randomly shuffled into different subsamples to produce 

statistically dependable results and the average result is 

computed. 

D. Experiment results and discussion 

To pinpoint the optimal parameter settings for the 

improved SMOTE, experiment results using different 

SMOTE parameters with transfer learning are presented. In 

Table III, overall accuracy and standard deviation obtained 

with different weight coefficient ranges are tabulated. 

TABLE III.  RESULTS USING DIFFERENT WEIGHT 

COEFFICIENT RANGE 

Weight 

coefficient 

range 

Accuracy % Standard 

deviation 

0.5 81.07 0.0941 

0.4 - 0.6 85.53 0.0929 

0.3 - 0.7 85.47 0.0705 

0.2 - 0.8 85.33 0.0842 

0.1 - 0.9 86.13 0.0681 

0 - 1 84.67 0.0825 

 
 

As shown in Table III, the range 0.1-0.9 yields the 

highest accuracy, at an improvement of 1.5% compared to 

applying original SMOTE (corresponding to the weight 

coefficient range 0-1). This is because with weight 

coefficient close to 0 or 1, the generated images are 

extremely similar to one of the parent images and provide no 

further useful information to the feature extractor. 

Conversely, this may even cause the classifier to overfit 

those images. Moreover, it is discovered that with the weight 

coefficient fixed at 0.5, the accuracy is much lower than the 

other cases as images generated are not diversified. To 

further improve the classification result, we set the weight 

coefficient range to be 0.1-0.9 and augment more images for 

training. The results with different data augmentation 

multiplier are shown in Table IV. 

 

TABLE IV.  RESULTS USING DIFFERENT DATA AUGMENTATION 

MULTIPLIER 

Multiplier Accuracy % Standard 

deviation 

2 86.13 0.0681 

3 86.67 0.0874 

4 86.67 0.0772 

 
   It is observed from Table IV that when images with 3 times 

of the number of original images are generated, the accuracy 

increases by 0.5% as larger image set contains more general 

features. At higher N, the accuracy approaches to a constant 

value. This may be constrained by small size of the original 

dataset. Despite the effort to generate more images, there is 

an intrinsic limit to the possible improvement as images 

synthesized become redundant and provide no additional 

information to the classifier. Based on the above observation, 

the redundancy reduction experiment is carried out with the 

weight coefficient range set to be 0.1 to 0.9 and the multiplier 

at 4. The results are tabulated in Table V with comparison 

with the V-PLDA method [6] and Inception-ResNet-v2 

without data augmentation using SMOTE. 

 

TABLE V.  RESULTS OF DIFFERENT CLASSIFIER 

Method Accuracy % Standard 

Deviation 

V-PLDA [6] 77.33 0.0982 

Inception-ResNet-

v2 

81.87 0.0889 

Inception-ResNet-

v2 with Improved 

SMOTE 

87.33 0.0767 

     

       From Table V, several points can be noticed: i) With 

redundancy reduction, the accuracy is further improved by 

0.66%. This proves that duplicate images will cause the 

model to be over-fitting, resulting in poor generalization to 

images which are new to the training set. ii) With the 

employment of transfer learning using pre-trained model 

Inception-ResNet-v2, the accuracy achieves a gain of more 

than 4% compared to the V-PLDA method [6]. This is 

because the pre-trained model has been trained on a large 

image set and thus it is able to learn high-level features. iii) 

With the additional application of the improved SMOTE, the 

accuracy is further improved by 5.5%. Overall, our proposed 

method achieves a significant accuracy improvement of 10% 

as compared to V-PLDA method. This improvement is 

significant, and our proposed method is also practical in 

developing other classification models for similar 

applications, as for most biomedical image analysis practices, 

the small and domain-specific dataset is a common problem. 

IV. CONCLUSION 

 
 In this paper, to address the problem of limited real-world 
training images in the classification of five common non-
tumorous facial pigmentation disorders, we have proposed to 
combine an improved SMOTE with transfer learning. In the 
improved SMOTE, the image generation process is adjusted 
based on the similarity measurement. Transfer learning with 
the pre-trained network architecture Inception-ResNet-v2 is 
employed to apply deep learning on small datasets. With the 
combination of the improved SMOTE and transfer learning, 
a significant improvement is achieved reflected by the overall 
accuracy increase (10%) compared to the V-PLDA method 
[6]. Specifically, by fine-tuning the range of weight 
coefficient, and adjusting the data augmentation multiplier of 
SMOTE and by removing those highly redundant images 
from the newly generated training set, the classification 
accuracy has improved by about 5.5% compared to the 
method using transfer learning only. This is promising for 
tackling other similar medical image applications limited by 
a small dataset in the future.  
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