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Abstract
Deep learning and more specifically Convolutional Neural Network (CNN) is a cutting edge technique which has been applied 
to many fields including biomedical image classification. To further improve the classification performance for biomedical 
images, in this paper, a feature concatenation method and a feature concatenation and ensemble method are proposed to 
combine several CNNs with different depths and structures. Three datasets, namely 2D Hela dataset, PAP smear dataset, 
and Hep-2 cell image dataset, are used as benchmarks for testing the proposed methods. It is shown from experiments that 
the feature concatenation and ensemble method outperforms each individual CNN, and the feature concatenation method, 
as well as several state-of-the-art methods in terms of classification accuracy.

Keywords  Deep convolutional neural network · Transfer learning · Ensemble learning · Feature concatenation · Biomedical 
image classification

1  Introduction

Biomedical images are widely used in applications such 
as diagnostics, healthcare, and pharmaceutical testing. By 
revealing areas and objects beyond the resolution range 
of normal naked eyes, biomedical imaging like micros-
copy can provide great details of structures of the finest 
objects. Thanks to outstanding color reproduction and a 
high dynamic range of detection, biomedical images can 
also unfold the interior of a body and micro-structures of 
organizations with high fidelity. For example, pap smear 
images are used in pap tests to differentiate diseased tissues 
from normal ones and facilitate early detection of cancer 
(Ashtarian et al. 2017; Jantzen et al. 2005). Hela is a dura-
ble and prolific line of cells that has been used for various 
experimental observations and clinical diagnosis, ranging 
from the development of the polio vaccine to the study of 
the AIDS virus (Boland and Murphy 2001).

Despite the great benefits that biomedical images provide 
for biomedical research and clinical practice, convention-
ally only professional researchers and specialized doctors 

can analyze these images. Even though experts are well 
trained to identify characteristic patterns in the images, such 
as abnormal shape and color, visual inspection is prone to 
challenges from both subjective and objective perspectives. 
For example, experts, as human beings, are inexorably sus-
ceptible to fatigue, emotional fluctuation, and other stochas-
tic subjective biases; on the other hand, the considerable 
variability in biomedical images and possible clumping and 
occlusion of cells in images make the examination even 
harder. These challenges not only make exigent demands 
on the time and energy of researchers and doctors, but also 
possibly impair the accuracy and efficiency of image analy-
sis and classification.

In view of the above-mentioned challenges, a growing 
number of machine learning approaches have been proposed 
to address biomedical applications, such as noise suppres-
sion (Jeon 2017), electromyogram analysis (Ambikapathy 
and Krishnamurthy 2018), and time-series clinical data 
interpretation (Duneja et al. 2018). Deep learning is a new 
and promising approach that moves one step forward by 
featuring its scale and hierarchical feature learning capabil-
ity. Inspired by brain structure and functions, various deep 
learning models have been developed, most noticeably the 
Convolutional Neural Network (CNN). CNN obtains the 
“convolved feature” by moving a sampling window along 
the rows and columns of an input image and compute the dot 
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product of the sliding “window” and the corresponding pix-
els in the image. Compared to traditional feature extraction 
methods, the weights shared among the convolutional layers 
and the properly chosen pooling after convolving equip CNN 
with many advantages such as translation invariance. Some 
pioneering and current works applying CNN to biomedi-
cal image analysis are reviewed in Litjens et al. (2017). For 
example, (Ciresan et al. 2012) uses a deep neural network 
with max-pooling layers as a pixel classifier and segments 
brain membranes depicted in a stack of electron microscopy 
(EM) images. Ciresan et al (2013) uses a deep neural net-
work to detect mitosis to help analyze breast cancer histol-
ogy images. Kamnitsas et al. (2017) proposes a dual path-
way, three-dimensional CNN with eleven layers in depth to 
implement brain lesion segmentation, and many more.

However, the CNN model usually consists of many lay-
ers and needs to be trained with millions of data samples. 
To facilitate wider applications, several open source pre-
trained models have been trained on large datasets so that 
they can be directly used as a feature extractor to solve real-
life problems with only limited training data. This technique 
of applying pre-trained networks to small datasets is called 
transfer learning. Esteva et al. (2017) uses a GoogleNet 
Inception v3 CNN architecture to differentiate benign and 
malignant melanomas and to diagnose potential skin cancer. 
An ensemble of AlexNet and GoogleNet has been made and 
used multiple classifiers including support vector machine 
(SVM) with Principle Component Analysis (PCA) and Soft-
Max (Kumar et al. 2017). This work is one of the pioneer-
ing works presenting comprehensive research findings in 
applying CNNs to biomedical image classification. While 
the techniques and results presented are promising, we feel 
that further improvement is necessary. This could be seen 
from the fact that although using deep learning techniques 
and fine-tuning, the method in Kumar et al. (2017) did not 
outperform some of the traditional classification methods 
for the datasets used in their paper. As fine-tuning of CNNs 
takes a lot of time and human effort and may result in over-
fitting when the dataset for training is small, it is desirable 
to develop biomedical image classification methods which 
avoid fine-tuning.

Built upon the work and yet to alleviate the above-men-
tioned limitation, we propose in this paper an improved 
method for biomedical image classification based on a fea-
ture concatenation and ensemble of deep CNNs. The major 
contributions of this work can be summarized as: (1) By 
combining several recently developed CNNs of various 
depths and structures, the proposed model takes advantage 
of multiple sets of convolved features and extracts their 
complementary information. (2) By replacing a single deli-
cately fine-tuned model with an ensemble of networks and 
by adding one hidden layer before the last soft-max layer, 
we avoid the fine-tuning procedure. (3) By applying transfer 

learning, multiple pre-trained networks are used for small 
medical image datasets. A preliminary version of this paper 
was recently presented in a conference (Nguyen et al. 2018).

The remaining part of this paper is structured as fol-
lows. Section 2 presents our proposed methodology, key 
terms involved and the implementation of our model based 
on a feature concatenation and ensemble of deep CNNs. 
Section 3 illustrates our experiment setting, results and a 
detailed analysis. Section 4 concludes the paper.

2 � Methodology

In this paper, we propose a new method for biomedical 
image classification based on a feature concatenation and 
ensemble of deep CNNs and using transfer learning. Exploit-
ing three most recent CNN models, we propose to first con-
catenate the last layer of features obtained from these models 
as a new model. Then an ensemble technique is applied to 
these four models as illustrated in Fig. 1 and the details of 
the proposed method are discussed in the following.

2.1 � Transfer learning

Transfer learning is a machine learning technique which 
exploits rich and complex feature representations for smaller 
datasets with limited labeled samples. In transfer learning, 
a deep neural network is trained with a large set of labeled 
samples from related tasks and then used as a feature extrac-
tor for a small dataset. Given the enormous resources pro-
vided for training, the transfer learning model is expected to 
extract features general enough to be applied to similar but 
different datasets. This pre-training step with base network 
facilitates the subsequent learning procedure and allows 
more rapid progress when modelling the second and other 
ensuing tasks. The base model can be utilized as a feature 
extractor and only the last few layers of the pre-trained net-
work need to be modified into customized layers to fit each 
specific task. Therefore, only the last customized layers need 
to be trained and the number of parameters to be adjusted 
is considerably reduced. These layers act as the final classi-
fier for the dataset and small variations of the layer setting 
offer slightly different results. By experiments, it is observed 
that adding one hidden layer before the last soft-max layer 
provides the best result for the small biomedical image data-
sets we have at hand. Figure 2 describes the structure of the 
transfer learning model.

Thanks to ImageNet which is a large manually anno-
tated image database, a benchmark is provided for 
researchers to evaluate their methods and algorithms. 
Many teams participate in the annual ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) and this 
leads to the development of various CNNs. In this paper, 
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we choose three most recent pre-trained models trained 
on the ImageNet dataset, namely Inception-v3 net (Sze-
gedy et al. 2016), ResNet152 net (He et al. 2016), and 
Inception-ResNet-v2 net (Szegedy et  al. 2017). These 
three models are chosen since they achieved outstanding 
performance in ILSVRC and represent the state-of-the-art 
deep learning techniques such as auxiliary classifier (Sze-
gedy et al. 2016), identity mapping (He et al. 2016), label 
smoothing, and Rectified Linear Units (ReLU) (Szegedy 
et al. 2017). In addition to these three CNNs, we propose a 
CNN method by concatenating the feature vectors of them. 
The structures of these three networks and the proposed 
feature concatenation are briefly described as followings:

2.1.1 � Inception‑v3 net (Szegedy et al. 2016)

Inception-v3 is an extended work of inception-v2 that 
achieves high efficiency in performing image recognition 
tasks by factorizing 5×5 convolution into two smaller 3×3 
convolutions to speed up computation and by expanding the 
filter banks in width to remove the representational bottle-
neck. By adding a regularizing component to the loss func-
tion, the novel Inception-v3 net attains label smoothing and 
to a large extent, prevents overfitting. Moreover, Inception-
v3 further factorizes 7×7 convolution and concatenates 
multiple different layers with batch normalization technique, 
rendering even higher efficiency and less computational 
complexity. The detailed structure is shown in Fig. 3.

Fig. 1   The structure of the 
proposed method

Fig. 2   Transfer learning model

Fig. 3   Inception-v3 net
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2.1.2 � ResNet152 net (He et al. 2016)

Inspired by Vector of Locally Aggregated Descriptors 
(VLAD) and residual vectors, Residual networks (Resnet) 
is constructed by a family of multiple deep neural net-
works with shortcut connections between plain networks, 
which implements residual learning and identity mapping. 
By introducing deep residual networks and recasting 
the traditional mapping into residual mapping, residual 
learning addresses the degradation problem, which is the 
decrease in training accuracy after reaching a saturation 
point. ResNet152, in particular, consists of 152 layers 
and is one of the deepest networks ever presented on Ima-
geNet. It is constructed in such a delicate feedforward net-
work with shortcut connection which skips one or more 
layers that it yields better classification accuracy without 
increasing the complexity and computational demand of 
the whole model. We select ResNet152 since it is one of 
the best performers of Resnet family members and the 
details of its structure are shown in Fig. 4.

2.1.3 � Inception‑ResNet‑v2 net (Szegedy et al. 2017)

Inception-ResNet-v2, as its name suggests, is a combina-
tion of inception net and residual net. It only performs 
batch-normalization on the top of traditional layers but 
not on the summations. This simplification reduces the 
overall memory footprint that is consumed and increases 
the total number of possible inception blocks. Further-
more, compared to previous residual variants that tend 
to be unstable after the number of filters exceeds 1000, 
Inception-ResNet-v2 manages to stabilize the training by 
scaling down the residuals before adding them to previous 
activation layers. The details of the structure of Inception-
ResNet-v2 is shown in Fig. 5.

2.1.4 � Concatenated CNN model

After applying the aforementioned neural networks and feed-
ing with biomedical images as the input, a set of convolved 
features can be extracted in the form of feature map from 
each individual neural network. We further combine them 
by concatenating one feature vector after another to obtain a 
concatenated feature map. The fourth feature map does not 
require any separate network, but just compiles numerical 
information together and forms a new vector map. Figure 6 
shows the details of the formation of the fourth feature map.

2.2 � Multi‑feature‑extractors model

Based on the transfer learning theory, we choose three pre-
trained networks, namely Inception-v3, ResNet152 and 
Inception-ResNet-v2 and three sets of feature maps can 
be extracted before the hidden layer. Note that for several 
research works have suggested that using various CNN fea-
tures tends to improve the overall performance. In Zheng 
et al. (2016), the network is designed to collect both low-
level and high-level features by combining information 
obtained from all CNN layers. Similarly, Kawahara and 
Hamrneh (2016) makes use of images of different levels of 
resolution to acquire several sets of features for training the 
network and improves the performance on skin-lesion detec-
tion. In this paper, in addition to three feature maps obtained 
from pre-trained models, we add another feature descriptor 
that concatenates three sets of features into a longer feature 
vector.

2.3 � Ensemble learning and the proposed overall 
structure

Dated back to 1990s, ensemble learning was designed to 
boost weaker learners to stronger ones. The method involves 
a number of learners called base learners and combine 
their results in a variety of ways, e.g., boosting, bagging 

Fig. 4   ResNet152

Fig. 5   Inception-ResNet-v2
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and stacking (Dietterich 1997). It has been shown that the 
generalization performance of ensemble learning model is 
significantly enhanced. Since training data can only provide 
limited information and it is generally impossible to find 
exactly one learner which always produces the best results, 
ensemble learning makes sense possibly because the ensem-
ble model can always choose the optimal model in different 
situations and provide a better approximation of the true 
target function in the hypothesis space. In this paper, we 
ensemble the four feature maps elucidated above by taking 
the average of labels at the hidden layer before finally for-
warding the result to the SoftMax layer for the ultimate clas-
sification. Compared to previous pioneering networks, such 
as AlexNet that achieves the state-of-the-art performance by 
averaging seven CNN models with the same structure and 
ResNet that champions in ILSVRC2015 by averaging six 
models with different depth, our new ensembled model aims 
to maximize the complementary effect and advantages of 
different networks. This combinational assembly works well 
and is justifiable based on Krogh and Vedelsby’s theory that 
the base learners of the ensemble model should be as accu-
rate and as diverse as possible (Krogh and Vedelsby 1995).

To be specific, the proposed method combines the transfer 
learning models with different neural networks by an ensem-
ble of the Inception-v3 net, ResNet152, Inception-ResNet-v2 
net, and the concatenated CNN model. It is suggested in Ju 
et al. (2018) that averaging multiple networks could produce 
a smaller variance, which is of great importance especially 
when the networks involved are uncorrelated to each other. 
The unweighted average approach is adopted, and details of 
implementation are shown in the following.

Consider a classification task of N classes, with M base 
learners. Let zji be the value of the jth base learner (j = 1, 
2, …, M) at the ith node of the last layer (i = 1,2, …,N). 
Since different network structures have different scaling 
mechanisms, values should be normalized first before per-
forming any further computation so that the networks can 

be unbiasedly combined together. Let vji be the normalized 
value of zji:

where E
(

zji
)

and �
(

zji
)

 are the expectation and standard devi-
ation computed over the training dataset.

The averaged value of all models (or the combined value) 
for the ith node is:

in which M is the number of the classifiers used.
Applying the SoftMax function to the final layer, the 

output of the network at the ith node is defined as:

In our experiments, we average the logit layers given by 
the four networks (three single transfer networks and the 
feature concatenation network). We then apply SoftMax 
to the averaged logits result to form the final prediction 
result. It is suggested in Kumar et al. (2017) that fine-
tuning can help transfer learning fit better to one specific 
task performed. However, since the dataset used in this 
experiment is relatively small, fine-tuning is not applied 
here to avoid potential overfitting. Instead, one more hid-
den layer is added before the final classification layer of 
the proposed ensemble model. This adjustment aims to 
extend the learning capability of the proposed network and 
to adapt the generic features extracted from transfer learn-
ing to the specific tasks performed without fine-tuning.

vji =
zji − E

(

zji
)

�

(

zji
)

vi =
1

M

M
∑

j=1

vji
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�

vi
�

=
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∑N
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Fig. 6   Concatenated CNN 
model
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3 � Experiments

Three experiments were conducted to perform the clas-
sification task on three biomedical image datasets to 
be discussed in this section. In the first experiment, the 
effectiveness of the proposed feature concatenation and 
ensemble method is evaluated through various combina-
tions of networks; the performance of the proposed feature 
concatenation method and that of the feature concatenation 
and ensemble method are compared to the performance 
of the three individual CNNs, respectively. In the second 
experiment, the proposed method is compared with two 
recent machine learning methods using hand-craft fea-
tures: (1) the spatial adjacent histogram based on adapted 
local binary patterns (SAHLBP) (Liu et al. 2016) and (2) 
a reject option based cascade structure of a support vector 
machine (SVM) with subspace analysis (Lin et al. 2018). 
These two methods are chosen for comparison because 
they are the best available published methods for the three 
benchmark biomedical image datasets so far. In the third 
experiment, the proposed method is compared with an 
ensemble CNN method presented in Kumar et al. (2017), 
which applies finetuning to AlexNet and GoogleNet, feeds 
the extracted features to Support Vector Machine (SVM) 
and SoftMax classifiers, and finally performs feature con-
catenation and ensemble five classifiers to obtain the clas-
sification results.

3.1 � Datasets

Three public biomedical image datasets are chosen as the 
benchmark for our evaluation: 2D Hela dataset, PAP smear 

dataset, and Hep-2 cell image datasets. Since we mainly 
use CNNs as our feature descriptors, all images are taken 
in colors to preserve with as much information as possible.

3.1.1 � 2D Hela dataset

2D Hela (Boland and Murphy 2001) is a dataset of fluores-
cence microscopy images of Hela cells that are stained with 
various organelle-specific fluorescent dyes. The dataset con-
tains ten classes, which are DNA (Nuclei), ER (Endoplasmic 
reticulum), Giantin (cis/medial Golgi), GPP130 (cis Golgi), 
Lamp2 (Lysosomes), Mitochondria, Nucleolin (Nucleoli), 
Actin, TfR (Endosomes), and Tubulin. The images have uni-
form size of 512 × 382 and typical images of each class are 
shown in Fig. 7.

3.1.2 � PAP smear dataset

PAP smear dataset (Jantzen et al. 2005) is a dataset which 
consists of 917 images unevenly distributed in seven dif-
ferent classes. It is published to the public to facilitate the 
detection of cervical cancer and serves as a benchmark for 
biomedical images classification. The image size ranges 
from 45 × 43 to 768 × 284 and representative samples are 
shown in Fig. 8.

3.1.3 � Hep‑2 cell image dataset

The Human Epithelial type-2 cells or Hep-2 cells dataset 
(Foggia et al. 2013) contains indirect immunofluorescence 
(IIF) images which can be applied to assist detection of auto-
immune disease by searching for abnormal antibodies in the 
patient serum. The Hep-2 cell dataset is used by the con-
test of the International Conference on Pattern Recognition 

Fig. 7   Typical images of 2D Hela dataset
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(ICPR) and we also use it as a benchmark to testify our 
ensembled model. The image size ranges from 33 × 38 to 
396 × 295 and some typical images in the dataset are shown 
in Fig. 9.

3.2 � Experimental setting

For each experiment, following Lin et al. (2018), 30 inde-
pendent trials are performed to obtain the average perfor-
mance. The average accuracy and standard deviation for the 
testing set are then calculated accordingly. The accuracy a 
is calculated as follow:

in which m0 is the number of correctly classified images and 
m is the total number of the testing images.

For the image pre-processing, since the raw images vary 
a lot in terms of size ranging from 33 × 38 to 512 × 382, 
we resize all images to 256 × 256 in order to fit them into 
the pre-trained model. Batch normalization is also per-
formed based on the discussion in Sect. 2.3, while no data 

a =
m

0

m
× 100%

augmentation is carried out in the current setting except for 
the method presented in Kumar et al. (2017), to be discussed 
later. The fully connected layer of Inception-v3, ResNet152, 
Inception-ResNet-v2, and the concatenated feature map 
are 2048, 2048, 1536 and 5632, respectively. In each trial, 
we randomly choose 20% of the dataset as the testing set. 
For the remaining 80% of the dataset, we call it “training 
plus validation set” and randomly divide it to 4 equal folds 
to perform fourfold cross-validation to find the optimal 
hyperparameter using grid search. In each round of cross-
validation, we choose a fold (which contains 20% of the 
original dataset) as the validation set and the other threefolds 
(which contains 60% of the original dataset) as the training 
set. We then train the network on the training set, evaluate 
the performance on the validation set, and record the result. 
We repeatedly do that four times in order to iterate over 
the whole “training plus validation set”. Finally, the aver-
age validation accuracy is taken as the baseline for choos-
ing the best hyper-parameter setting. After determining the 
optimal set of the hyperparameters, the “actual” training is 
executed. The model is trained with the training and valida-
tion set using that hyperparameter setting and evaluated on 
the untouched test set.

Fig. 8   Typical images of PAP smear dataset in two categories: abnormal type (top row) and normal type (bottom row)

Fig. 9   Typical images of Hep-2 cell image dataset
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Early stopping is used in the experiment to avoid overfitting. 
In the hyperparameter tuning step, validation-based early 
stopping is applied: the training will be stopped after 500 
iterations if there is no improvement on validation accu-
racy. In the final training step, loss-based early stopping is 
applied: the training will be stopped if the training loss not 
decreasing after 500 iterations. The weights in the classifica-
tion layers are randomly initialized by Gaussian distribution 
with zero mean and a standard deviation of 0.001. Exponen-
tial decay is used to calculate the adaptive learning rate and 
the formula for the learning rate is shown as follows: 

where �
0
 the initial learning rate; k the learning rate decay in 

hyperparameter setting; T  the total number of steps which is 

� = �
0
× kt∕T

set to a fixed number 1000; t the current time step when the 
learning rate is adaptively updated; � the updated learning 
rate at the current time step.

More details of hyper-parameter settings for each network 
are presented in Table 1.

3.3 � Experimental results

Firstly, we compare the proposed feature concatenation 
method and the feature concatenation and ensemble method 
with each individual CNN models. Since the classification 
accuracy of Inception-ResNet-v2 is slightly lower than that 
of other two CNN models, we also experiment on removing 
it from the feature concatenation and ensemble method in 
order to examine its contribution. Table 2 shows the average 

Table 1   Hyper-parameter settings for each dataset and each network

Dataset Architecture Number of 
hidden layer 
neuron

Batch size Base 
learning 
rate

Learn-
ing rate 
decay

Dropout keep 
probability

PAP smear Transfer learning with Inception-v3 50 50 0.075 0.5 0.8
Transfer learning with ResNet152 100 30 0.075 0.33 0.7
Transfer learning with Inception-ResNet-v2 50 30 0.03 0.33 0.8
Feature concatenation of Inception-v3 and ResNet152 100 50 0.1 0.66 0.8
Feature concatenation of Inception-v3 and ResNet152 and 

Inception-ResNet-v2
100 50 0.075 0.5 0.8

Hela Transfer learning with Inception-v3 50 50 0.075 0.5 0.6
Transfer learning with ResNet152 50 50 0.1 0.5 0.7
Transfer learning with Inception-ResNet-v2 50 100 0.1 0.33 0.6
Feature concatenation of Inception-v3 and ResNet152 50 30 0.1 0.33 0.8
Feature concatenation of Inception-v3 and ResNet152 and 

Inception-ResNet-v2
50 30 0.075 0.5 0.7

Hep Transfer learning with Inception-v3 150 30 0.1 0.33 0.7
Transfer learning with ResNet152 150 30 0.05 0.66 0.7
Transfer learning with Inception-ResNet-v2 50 50 0.03 0.33 0.8
Feature concatenation of Inception-v3 and ResNet152 100 30 0.05 0.5 0.7
Feature concatenation of Inception-v3 and ResNet152 and 

Inception-ResNet-v2
200 30 0.1 0.66 0.7

Table 2   Comparison of the classification accuracies among each individual neural network, the proposed feature concatenation method and fea-
ture concatenation ensemble method, with and without Inception-Resnet-v2, respectively

Methods 2D-Hela PAP smear Hep

Transfer learning with Inception-v3 91.42% ± 1.91% 89.66% ± 1.89% 92.95% ± 1.33%
Transfer learning with Resnet152 89.95% ± 2.30% 90.87% ± 1.48% 92.28% ± 1.59%
Transfer learning with Inception-Resnet-v2 91.79% ± 2.61% 89.25% ± 2.23% 89.45% ± 1.48%
Feature concatenation of Inception-v3 and Resnet152 92.06% ± 1.64% 92.01% ± 1.50% 94.10% ± 1.23%
Feature concatenation of Inception-v3 and Resnet152 and Inception-Resnet v2 92.57% ± 2.58% 92.63% ± 1.68% 94.86% ± 1.58%
Ensemble of Inception-v3 and Resnet152 and feature concatenation of the two 92.56% ± 1.92% 92.38% ± 1.28% 94.78% ± 1.05%
Ensemble of Inception-v3 and Resnet152 and Inception-Resnet-v2 and feature 

concatenation of the three
93.51% ± 2.29% 93.04% ± 1.53% 94.98% ± 1.13%
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classification accuracy and the standard deviation of the 
compared methods, from which we can obtain several obser-
vations: (1) The feature concatenation and ensemble method 
outperforms each individual CNN and the feature concatena-
tion method for all three datasets in terms of accuracy, which 
demonstrates the effectiveness of our proposed method. (2) 
Individual networks tend to produce a good performance for 
one dataset but might perform poorly for another dataset. For 
example, single Inception-v3 beats the other two for 2D Hela 
dataset and Hep2 dataset, while it is about 1% lower than 
ResNet152 in accuracy for PAP smear dataset. This indi-
cates that CNNs with different depths and structures could 
extract distinctive features which may fit better to different 
datasets. (3) The comparisons of two feature concatenation 
and ensemble experiments show that after removing the 
Inception-ResNet-v2, the classification accuracy drops by 
about 1.0%, 0.6%, and 0.2% for the 2D-Hela, PAP smear, 
and Hep dataset, respectively. These observations indicate 
that Inception-ResNet-v2 still makes some contribution to 
the overall classification performance and it is helpful to 
incorporate it provided that enough training time and com-
putational resources are available.

From the experimental results and the observations dis-
cussed above, we conclude that an ensemble of a diverse 
family of learning models provides a more reliable result for 
different datasets. By bypassing the fine-tuning and refining 
the network with hidden layers added to the most recently 
pre-trained models, the proposed feature concatenation and 
ensemble method achieves satisfactory computational effi-
ciency without compromising the accuracy.

Secondly, we compare the proposed feature concatenation 
and ensemble method with two state-of-the-art methods: (1) 
the spatial adjacent histogram based on adapted local binary 
patterns (SAHLBP) (Liu et al. 2016) and (2) a reject option 
based cascade structure of a support vector machine (SVM) 
with subspace analysis (Lin et al. 2018). Based on the origi-
nal LBP, SAHLBP proposes a spatial adjacent histogram 
strategy with an adaptive neighbourhood radius assigned to 
each pixel. Three coding schemes are discussed to encode 
the micro-structures and local patterns for biomedical 
images (Liu et al. 2016). The reject option based method 
improves the performance by taking two complementary 
hand-craft features, scale-invariant feature transform (SIFT) 
and speed-up robust feature (SURF) and by applying reject 

option to ensure a relatively high confidence score for each 
classification result (Lin et al. 2018).

The average accuracy and standard deviation of the 
SAHLBP based method, reject option-based method, and 
the proposed feature concatenation and ensemble method are 
shown in Table 3. It is observed that the proposed method 
outperforms the reject option-based method for all three 
datasets by about 1.5% in accuracy. One possible reason 
is that unlike the reject option-based method that extracts 
hand-craft features like SIFT and SURF, the proposed fea-
ture concatenation and ensemble method takes advantages of 
multiple CNNs, which use the original three-channel color 
images without converting them into grayscale images. This 
exploits the discriminative information from three channels 
of color images for better classification. Another possible 
reason is that the state-of-the-art CNNs stand out with better 
generalization and robustness in performance compared with 
the traditional classification methods, e.g., SVM, when han-
dling complex biomedical pattern recognition tasks. These 
findings indicate that ensemble of CNNs can produce better 
classification results for a specific domain without resorting 
to hand-craft features.

The confusion matrices for the proposed feature concat-
enation and ensemble method and the reject option based 
method (Lin et al. 2018) for the 2D Hela dataset and for 
the Hep-2 cell image dataset are shown in Figs. 10 and 11, 
respectively. Note that in general, the proposed feature con-
catenation and ensemble method performs better than the 
reject option based method, as can be observed from these 
two figures.

Finally, we compare our proposed feature concatenation 
and ensemble method with the method presented in Kumar 
et al. (2017) which exploits multiple fine-tuned CNNs as 
feature extractors for the classification of medical images. 
We follow the ensemble design and re-do the fine-tuning 
part for both AlexNet and GoogleNet using our 2D-Hela 
dataset. Note that the images in our other two datasets, 
namely PAP smear and Hep, are too small to implement 
data augmention by cropping and flipping the center and 
four corners of each image, which is part of the method pro-
posed in Kumar et al. (2017). We use the Stochastic Gradient 
Descent (SGD) as the optimizer for both GoogleNet and 
Alexnet. Regarding the parameter setting, we experiment 
on momentum = 0.9 as mentioned in Kumar et al. (2017) 

Table 3   Comparison of the 
classification accuracies among 
the SAHLBP based method, 
reject option-based method, 
and the proposed feature 
concatenation and ensemble 
method

Methods 2D Hela PAP smear Hep2

SAHLBPT1 + SVM (Liu et al. 2016) 89.68% ± 2.0% 86.69% ± 2.1% 91.89% ± 0.8%
SAHLBPT2 + SVM (Liu et al. 2016) 87.29% ± 1.6% 84.03% ± 2.1% 88.59% ± 0.8%
SAHLBPT3 + SVM (Liu et al. 2016) 90.06% ± 1.5% 88.03% ± 1.7% 91.86% ± 0.9%
Reject option based method (Lin et al. 2018) 92.96% ± 1.3% 90.96% ± 0.5% 92.97% ± 1.0%
Proposed feature concatenation and ensemble method 93.51% ± 2.3% 93.04% ± 1.5% 94.98% ± 1.1%
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and momentum = 0, respectively. For the learning rate, we 
start from a large range of 1e−6 to 0.1 and find out that the 
range of [0.001–0.05] is suitable for the 2D-Hela dataset. 
Then we perform hyper parameter search for learning rate 
in [0.001–0.05] with step of 0.025 and introduce learning 
rate decay chosen in [0, 1e−6, 1e−3]. We split our dataset 
following our other experiments as stated in Sect. 3.2. Early 
stopping based on validation accuracy is introduced, i.e., the 
training will stop if the validation accuracy is not improved 
by more than 0.1% after 5 consecutive steps. The maximum 
number of epochs is set to 50, following (Kumar et al. 2017). 
The final parameters chosen for AlexNet and GoogleNet are 
stated in Table 4.

After fine-tuning, we also apply Principle Component 
Analysis (PCA) to reduce the dimensionality for effi-
cient SVM classifier training. Instead of directly choosing 

Fig. 10   The confusion matrices for the 2D Hela dataset generated 
by a the proposed feature concatenation and ensemble method; b the 
rejection option based method (Lin et al. 2018). C1: Actin; C2: DNA; 
C3: Endosome; C4: Er; C5: Golgia; C6: Golgpp; C7: Lysosome; C8: 
Microtubules; C9: Mitochondria; C10: Nucleolus

Fig. 11   The confusion matrices for the Hep-2 cell image dataset gen-
erated by a the proposed feature concatenation and ensemble method; 
b the rejection option based method (Lin et  al. 2018). C1: Cen-
tromere; C2: Coarse speckled; C3: Cytoplasmic; C4: Fine speckled; 
C5: Homogeneous; C6: Nucleolar

Table 4   Parameters chosen for AlexNet and GoogleNet

Network Momentum Learning rate Learn-
ing rate 
decay

AlexNet 0.9 0.0025 1e−06
GoogleNet 0.9 0.001 1e−06
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principle components that keep 90% of the data variance, 
we experiment on the PCA dimensions which occupy 90% 
and 95% of the variance, respectively. Finally, the one-vs-
one multi-class linear SVM classifiers are trained with the 
parameter C selected from the range [2×10−15 , 2 ×10−14,..., 
2 ×1014 , 2 ×1015 ] (Kumar et al. 2017).

During the implementation, we notice that the classifica-
tion accuracy of the method of Kumar et al. (2017) is much 
lower than that of our proposed method. We investigate 
the implementation of their method and suspect that it is 
the image pre-processing step that might impair the result. 
As shown on the left side of Fig. 12, if we strictly follow 
(Kumar et al. 2017) and perform data augmention by crop-
ping and flipping the center and four corners of each image, 
some important information might be lost. This is due to 
the fact that useful information may not be contained in the 

whole image and hence some of the sub-images contain lit-
tle or no information about the targets in the images of our 
dataset. With this observation, we re-implement the method 
of Kumar et al. (2017) again, but without cropping and flip-
ping the center and four corners of each image this time.

The results for both experiments, with and without image 
cropping and flipping the center, are shown in Table 5. It is 
noted that although the method in Kumar et al. (2017) pro-
duces better classification accuracy for the 2D-Hela dataset 
without cropping and flipping, our proposed method still 
achieves an accuracy gain by about 1.5% compared to the 
method in Kumar et al. (2017). The main reason for such 
performance gain comes from our exploitation of more 
advanced CNN architectures like ResNet and by adding one 
hidden layer before the last soft-max layer in our proposed 
method.

Fig. 12   Demonstration of 
information loss resulting from 
cropping method (images on 
the left) compared to normal 
resizing method (images on the 
right). For cropping method: 
original image (top left), 
cropped center image (middle 
left), cropped bottom image 
(bottom left). For normal resiz-
ing method: original image (top 
right), resized image (bottom 
right)
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4 � Conclusion

In this paper, we have proposed a feature concatenation 
method for biomedical image classification based on three 
individual models, Inception-v3, ResNet152, Inception-
ResNet-v2. To further improve the classification perfor-
mance, we also proposed the feature concatenation and 
ensemble method consisting of four individual models, 
Inception-v3, ResNet152, Inception-ResNet-v2. and the 
feature concatenated CNN model. In the experiments, 
three benchmark datasets are used for testing, each consist-
ing of different patterns and features. The results show that 
the feature concatenation and ensemble method generally 
outperforms each of the individual network, including the 
feature concatenation method, as well as several compet-
ing methods, both with or without CNNs, in terms of clas-
sification accuracy. The main contribution of this work is 
that transfer learning, feature concatenation and ensemble 
learning are integrated so that satisfactory results can be 
obtained for biomedical image classification even though 
the dataset is relatively small for the specific task. In par-
ticular, by adding one hidden layer before the last soft-
max layer, we avoid the fine-tuning procedure. As a result, 
the proposed feature concatenation and ensemble method 
manages to make a balance between accurate classifica-
tion and computational efficiency, which is essential for 
automated biomedical image classification and hence in 
the long run contributes to the establishment of a smart 
healthcare system in real life.
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