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Abstract— The ability to simultaneously distinguish objects,
their materials, the associated physical properties and more
is one fundamental function of the sense of touch. Recent
advances in both the development of tactile sensors and machine
learning techniques allow ever more accurate modelling of
robotic tactile sensations with increasing complexities. However,
many state-of-the-art (SotA) approaches focus solely on con-
structing black-box models to achieve ever higher classification
accuracy. Moreover, each type of tactile sensor produces a
unique spatial-temporal data format, making most of the
SotA models unable to transfer across sensors. In this work,
we propose an explainable and sensor-transferrable recurrent
networks (ESTRAN) model for tactile texture representation.
The ESTRAN model consists of a two-stage recurrent networks
fed by a sensor-specific header network. The first stage of
the ESTRAN makes use of the GRUs to decouple sensor-
specific information and split the tactile sensations into different
frequency response bands similar to our human touch receptors
while the second stage codes the overall temporal signature
as an LSTM autoencoder. We infuse the latent representation
with categorical labels of texture properties (e.g. rough, smooth)
to aid representation learning and provide explainability to
the latent space. The ESTRAN model is tested on texture
datasets collected with two different tactile sensors. Our results
show that the model not only achieves higher accuracy, but
also provides transferability across the sensors with different
sampling frequencies, data formats and texture classes. The
addition of the crudely obtained categorical property labels
offers a practical approach to enhance the interpretability of
the latent space and improve the overall performance of the
model.

I. INTRODUCTION

Being one of the most important sensory modalities in
physical interaction, the sense of touch has increasingly been
studied for robotic applications in unstructured environments.
Tactile sensing is used either as a complimentary or as an
integrative sensing modality to vision to infer properties of
the environment (e.g. glass v.s. transparent plastic) such as
distinguishing textures [1], [2], [3], [4], [5], [6], recognising
objects [7], [8], [9] and estimating object poses [10], [11].
It is also explored to enhance interaction control in slip
detection [12], dexterous manipulation [13], [14], [15] and
compliant interaction [16], [17].

*This research is supported by the Agency for Science, Technology
and Research (ASTAR) under its AME Programmatic Funding Scheme
(Project #A18A2b0046).

∗Authors with equal contributions.
1Robotics & Autonomous Systems Department, A*STAR Insti-

tute for Infocomm Research, Singapore. Email: {gao ruihan,wuy}
@i2r.a-star.edu.sg

2School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore. Email:
{tian0090,EZPLin}@ntu.edu.sg

Specifically for texture classification, works done can be
mainly divided into two streams: end-to-end learning and in-
ference based on hand-craft features. End-to-end learning are
more often applied to texture image classification [18], which
gains a boost following the development of Convoluted
Neural Network (CNN) [19], [20], [21], [22]. However, these
methods are limited to camera-based tactile sensors and can
provide little information about the abstract characteristics of
the materials. The other stream focuses on extracting hand-
crafted features with customized formulas. For example, [2]
extracts components of different vibration frequencies based
on Fourier coefficients; roughness, traction, and fineness are
formulated by sensor pressure readings and motor currents in
[3]. Others also work on the discrimination of one specific
material property through different hardware designs [23],
[24]. Although models with hand-crafted features are natu-
rally more explainable, they are, however, sensitive to the
customized formulation and may not be easily generalizable
beyond the demonstrated datasets.

Despite the extensive works, most of the proposed meth-
ods are sensor-specific. Unlike other sensing modalities
which have standardised their data representation formats,
that of tactile sensory outputs varies significantly across
different sensors which themselves also vary in sensing
mechanisms (e.g. capacitive, optical, barometric, piezoresis-
tive), contact medium, shapes and spatial distributions. This
also contributes to the level of difficulty to generalise models
to other applications which use different sensors.

Inspired by the domain adaptation approach, [25] proposes
a weakly supervised recurrent autoencoder framework in an
attempt to extract the common features in surface texture
properties for classification purpose from data collected from
heterogeneous sensors with varied protocols. By minimizing
the mean square error between the latent vectors of two
heterogeneous datasets, a joint training approach is able to
align the latent representation for each class and to improve
inference performance over model learned from individual
sensor. It thus provides some evidence on the benefits of
releasing and using tactile datasets collected on different
sensors. However, the unified common latent representation
remains obscure to human understanding and the joint train-
ing process requires the datasets from different sensors to
have the same classes and sample sizes which might not be
practical for real-life applications. Moreover, since only the
latent representation is common, the learned model cannot
be reused on other sensors outside the joint training process.
Complete joint training for each pair of datasets is required
which further limits the reusability of the framework.



In this work, we propose the explainable and sensor-
transferrable recurrent networks (ESTRAN) model, a hierar-
chical learning-based temporal information encoding scheme
with additional categorical labels infused at the latent space
in an attempt to address the above issues. This approach
splits the processing of the temporal signature of a tactile
signal into two stages. The outer stage performs sensor-
or application- specific preprocessing, which is drawn from
inspiration of the human mechanoreceptors, to extract low-
level frequency-based features. The outputs are then trans-
mitted to the inner-stage for sensor-independent temporal
signature modelling. This hierarchical approach, thus, allows
transfer learning to take place across datasets collected with
different sensors, sampling frequencies and setups. To build
explainability into the model, we also propose to add further
weak supervision at the latent space, by infusing categorical
property labels that can be inexpensively obtained from
qualitative common-sense knowledge bases or human intu-
ition. The added explainability, in turn, improves the model’s
learning effectiveness and provides more interpretable clas-
sification results. In summary, this paper makes four primary
contributions:

• We propose ESTRAN, a hierarchical learning model
that is agnostic to sensor sampling frequency and data
length;

• The model decouples the sensor-specific feature extrac-
tion task from the texture classification one allowing
the possibility to perform transfer learning between
heterogeneous datasets without the need to completely
retrain a fresh model with external dataset.

• With the addition of categorical labels of texture prop-
erties, the model achieves higher learning efficiency
and enhances the explainability of the representation
learning.

• To further validate the efficacy and efficiency of the
proposed approach, we expand the number of textures
from 20 to 50 and collect twice the number of samples
per class to that of our released dataset on the BioTac
sensor for training and validation.

The rest of this paper is organized as follows. We introduce
the methodology of the proposed framework in Section
II, then present the experiments, results and discussions in
Section III, and finally draw conclusions in Section IV.

II. METHOD
The overall framework of the ESTRAN is shown in Fig.

1a. It consists of 4 basic components, the Header Network,
the Outer Recurrent Stage, the Intermediate Relay and the
Inner Recurrent Stage. The MLP/CNN Header Network
is used to localise and enrich the features arising from
the groups of activated taxels due to a tactile event. The
Outer Recurrent Stage (ORS), which uses Gated Recurrent
Units (GRUs) operating at distinct frequencies as inspired
by human mechanoreceptors, extracts features responding at
different temporal scales. The Intermediate Relay integrates
the ORS outputs into a unified feature representation before
being encoded by the Inner Recurrent Stage (IRS). The IRS

consists of a Long Short-Term Memory Variational Autoen-
coder (LSTM-VAE) with classifiers at the latent space for
texture property infusion and texture classification. We map
the whole latent representation to the texture labels while
assigning the categorical properties to dedicated neurons of
the latent vector with a linear mapping and activation. The
following sections will introduce the modules in details.

A. The Header Network

The task of texture classification via sliding motion typ-
ically involves a small group of taxels around the point of
contact between the sensor and the surface while the vast
number of other taxels stay dormant. It is thus practical to
firstly localise and enrich the spatial tactile features before
temporal learning takes place. Thus, the introduction of
a header network acting as a spatial attention mechanism
can produce a more compact overall model which in turn,
can learn faster. A Convolutional Neural Network (CNN)
can be used if the taxels are fairly regularly distributed
and the total number of taxels is big (e.g. iCub RoboSkin
[26]). Conversely, a Multi-Layer Perceptron (MLP) can be
employed (e.g. BioTac [27]). Specifically, a convolutional
kernel size of (3, 5) is applied to RoboSkin data of input
size (6,10) followed by a max pooling as proposed in [5]; a
linear layer with input size 19 and output size 18 is applied to
BioTac readings of 19 electrodes. Overall, the sensor-specific
header network maps the raw input readings at each time step
into a fixed-sized output (18 in our case) and accomplishes
spatial compression.

B. The Outer Recurrent Stage

The output of the header network at the sensorś output
frequency will be fed into a parallel number of GRUs to
extract responses at different temporal resolutions, similar
to the motivation of clockwork Recurrent Neural Network
(RNN) [28]. GRU is empirically chosen based on compu-
tational efficiency and performance. We also introduce a
residual factor when initialising the GRU cell in between
receiving consecutive segments of one sequence, i.e.

h0(n+ 1) = hT (n) ∗ r (1)

where n represents the index of segments, T represents the
length of the preceding input segment to a receptor, and r
represents the scaling number of residual.

To balance the temporal resolution and computational
efficiency, we implement only two GRU units, namely “fast”
GRU (F-GRU) and “slow” GRU (S-GRU), and determine the
exact frequency empirically based on the sampling frequency
of two sensors used in the experiments. For example, if
the input signal is 100Hz and if the GRU is sensitive to
20Hz stimuli, every 5 consecutive time samples will form a
“complete” sequence as inputs to this GRU. The hidden state
of the 5th time step will be transmitted to the Intermediate
Relay. More details of parameter tuning are illustrated in
Section III.



Fig. 1: Overview of the proposed ESTRAN model which encodes the tactile signal into a hierarchical recurrent network
representation. Its latent space, which is used to perform texture classification, is infused with categorical texture property
labels.

C. Intermediate Relay

As the GRUs at ORS output responses at different fre-
quencies, we use F-GRU as the pacemaker, setting the input
frequency for processing at IRS. S-GRU output is aligned to
F-GRU output at the closest time-step. For all other time-
steps, S-GRU outputs are treated as zero. The yellow box
in Fig. 1a shows a sample feature map for F-GRU receptor
and S-GRU, respectively. The horizontal axis represents time
scale, and the vertical axis represents features. Columns of
uniform color in S-GRU feature map represent the zero-
padding when F-GRU outputs but S-GRU does not.

D. The Inner Recurrent Stage

The IRS consists of three components: the LSTM to
model the sensor-invariant temporal dynamics, the variational
autoencoder to mimic sensory imagery and the classifiers to
texture property infusion and texture discrimination.

1) LSTM: receives input signals from the Intermediate
Relay. The hidden state at the last time step is extracted
as the output feature and is passed to a fully connected (FC)
layer to obtain the latent space vector. The hidden size and
latent representation size follow the implementation in [25],
i.e. 90 and 40, respectively.

2) Variational autoencoder: is to reconstruct the sensory
imagery. Practical consideration in having the autoencoder
is to provide added reconstruction constraints to improve
classification performance. We reconstruct the signal only
at IRS to learn a sensor-agnostic representation and use a
Gaussian prior for the latent space.

3) Classifier: A standard linear layer is implemented to
map the latent representation to a distribution over C texture
classes. Multi-class cross-entropy loss is minimized between
output vector and ground truth texture label y.

To enhance the explainability of the proposed model, we
provide categorical labels of the texture properties at the
latent representation. In this work, roughness and stiffness
are chosen for illustration based on human common sense
and previous texture classification work using texture prop-
erties [29], [30]. We use -1, 0, 1 as a coarse grading, e.g. for
roughness, -1 for smooth, 1 for rough, and 0 for moderate or

medium-scale. Such labellings can be inexpensively obtained
from knowledge bases or human intuition. For each property,
we map one neuron of the latent vector to the property
label via a linear transformation with activation such that the
categorical labels does not impose unbalanced scaling or dis-
cretize the latent space. The property labels are obtained by
averaging over human common sense. To provide unbiased
benchmark, ten participants (five males and five females) are
invited to label the material properties in terms of roughness
and stiffness. These qualitative labels are then averaged to
obtain the final categorical label for each texture.

E. Implementation and Evaluation Metrics

The proposed model is trained and tested on texture
classification and property infusion in two groups of experi-
ments: end-to-end training on individual datasets and transfer
learning between heterogeneous sensor datasets. A common
loss function Loss is used. It is a weighted sum of texture
classification loss Ltcl, property loss for roughness Lpr and
stiffness Lps, reconstruction loss Lr, and KL divergence loss
Lkl:

Loss = wtcl ∗ Ltcl + wpr ∗ Lpr + wps ∗ Lps
+wr ∗ Lr + wkl ∗ Lkl

(2)

where wtcl, wpr, wps, wr, and wkl are the weights for
texture classification loss, roughness property loss, stiffness
property loss, reconstruction loss, and KL divergence loss,
respectively. Details of the model parameter choices are
described in EXPERIMENTS.

The texture classification uses standard cross-entropy loss
and aims to maximize the probability of the ground-truth
label yi given a data point xi.

Ltcl =
1

N

N∑
i=1

C∑
c=1

I(c, yi)log(pxi,c) (3)

where N is the number of data points, C is the number of
classes, pxi,c is the predicted probability of input xi being
of class c.

For property infusion, we map one neuron of the latent
vector to a property label to a linear layer with activation



and minimize the mean square error between the mapping
output and the property label. The neurons chosen for
dedicated property learning are the first neuron (index 0)
for roughness property and the second neuron (index 1) for
stiffness property, without loss of generality:

ẑ0i = z0i ∗ a0 + b0

ẑ1i = z1i ∗ a1 + b1

Lpr =
1

N

N∑
i=1

(ẑ0i − yri)2

Lps =
1

N

N∑
i=1

(ẑ1i − ysi)2

(4)

where zji is the index j neuron of the latent vector z of the
ith sample, ẑji represents corresponding mapping output of
zji after a linear transformation and activation, aj and bj
are learnable parameters of linear transformations, and yri
and ysi are the roughness label and stiffness label for the ith

sample, respectively.
The reconstruction loss is set to be the mean square error

between input and the reconstructed input, and aims to main-
tain fidelity to input data. In this work, the reconstruction
loss is implemented at two layers in the IRS processing, i.e.
input to the LSTM and input to the FC layer of variational
autoencoder.

Lr =
1

N

N∑
i=1

(hi − ĥi)2 (5)

where hi represent the hidden units at the input to the LSTM
and input to the FC layer of variational autoencoder, while ĥi
represent the corresponding reconstructed units, respectively.

The KL-divergence loss is implemented for the varia-
tional autoencoder and is minimized to reduce the disparity
between the encoder’s distribution qθ(z|x) and the true
posterior distribution p(z) [31].

Lkl =
1

N

N∑
i=1

DKL(qθ(z|xi)‖p(z))

=
1

N

N∑
i=1

(−0.5 ∗ (1 + log(σ2
i )− µ2

i − σ2
i ))

(6)

where q represents the encoder network, which makes an
inference about z based on input xi, and µ and σ are the
output of the approximated distribution.

Final classification performance is measured by:.

Acc =
1

N

N∑
i=1

(yi − ŷi)2 (7)

III. EXPERIMENTS

This section presents the experimental setup, the experi-
ments, results and discussions. In summary, we performed a
benchmark study against the RAEC model in [25] using a
number of datasets. To further understand the effect of the

explainable property infusion, a variant version of the RAEC
model was also implemented with texture property infusion
at its latent space.

A. Datasets

Apart from using the datasets released in [25] for bench-
marking, we collected a new set of data of 50 texture classes
with 50 samples for each class. This dataset is collected
under the same data collection protocol for the KUKA iiwa
robot attached with the BioTac sensor. Twenty of the classes
overlap with the existing dataset. The additional textures
range from cardboard to luggage belt. Snapshots of all the
textures are shown in Fig. 2 and a detailed documentation of
each material is accessible online*. The rest of this paper fol-
lows the naming convention in Table I. In particular, c20icub
and c20BT refers to the existing datasets on RoboSkin and
BioTac respectively; c20BTcombined combines the data of
the 20 common classes with that of the previous dataset;
c50BT is the complete set of newly collected data of the 50
textures.

Fig. 2: Snapshots of the 50 materials.

TABLE I: Dataset specifications

Dataset No. of classes Sensor No. of samples
per class

c20icub 20 RoboSkin 50
c20BT 20 BioTac 50
c20BTcombined 20 BioTac 100
c50BT 50 BioTac 50

B. Preliminaries

In this work, we heuristically determined the output size
of the Header Network to be 18, and r = 1 for the residual
constant in GRUs. The loss weights are chosen empirically
as follows so that the loss terms are of similar order of
magnitude: wtcl = 1, wr = 0.001, wkl = 0.0005. For wpr
and wps, since the datasets vary in data formats and therefore
have different sensitivity to the properties, while a common
set of property weights for all datasets can be found for good
model performance, we performed grid search to determine
the optimal property weights for each dataset as shown in

*https://github.com/RuihanGao/Bio-inpired-MTR-
TRAN.git

https://github.com/RuihanGao/Bio-inpired-MTR-TRAN.git
https://github.com/RuihanGao/Bio-inpired-MTR-TRAN.git


TABLE II: The optimal property weights for the datasets.

Dataset Model wpr wps

c20icub ESTRAN 1 1
c20icub RAEC 0.5 1
c20BT ESTRAN 0.2 0.5
c20BT RAEC 0.2 1
c20BTcombined ESTRAN 0.2 0.5
c20BTcombined RAEC 1 2
c50BT ESTRAN 1 1
c50BT RAEC 1 1

TABLE III: Preliminary results of different combinations of
fast(F)/slow(S) GRU operating frequencies

F-GRU/Hz
S-GRU /Hz 1 2 5 10

20 0.845 0.840 0.865 0.875
40 0.865 0.860 0.860 0.870
60 0.780 0.770 0.865 0.860
80 0.810 0.765 0.790 0.805
100 0.815 0.825 0.77 0.785

Table II. The exact property contributes to the models will
be presented in the subsequent section. For ORS, based on
the sampling frequencies of the sensors (BioTac at 100Hz,
RoboSkin at 50Hz), the sampling range of 20 − 100Hz
and 1− 10Hz for F-GRU and S-GRU respectively are used
to search for the frequency pair with the best performance.
Each combination runs for 20 epochs on c20 dataset. Based
on the results shown in Table III, the combination of GRU
frequencies are chosen to be 20Hz and 10Hz with hidden
size of 100 and 200 respectively.

C. Experiment 1: End-to-end training on individual datasets

We benchmark the performance of the proposed ESTRAN
model against the RAEC model using the same latent dimen-
sion in [25]. Ablation study is conducted to determine the
individual contribution of additional GRU units and property
labels. The results are shown in Table IV. The dataset is
randomly split for a 5-fold validation, with the ratio of train,
validation, and test size set to 6:2:2. All experiments are run
for 100 epochs.

In Table IV, the first row represents the performance of
the original RAEC model and the last row represents that
of the proposed ESTRAN model with property labels. In
general, the full ESTRAN model outperforms all other model
combinations in all datasets.

The contribution of the ORS layer with frequency response
modelling can be seen from the results comparison between
row 1 and row 3. We can see that the ORS layer improves
performance for all datasets while it is particularly significant
for datasets collected from the BioTac sensors. As the data
collection process for BioTac sensor is so much stricter than
that of the RoboSkin on iCub, the frequency response for
the BioTac datasets is expected to involve much less noisy.
Moreover, as BioTac operates at a higher frequency than
RoboSkin, the frequency-based response at different bands
can capture more enriched characteristics of textures.

To understand the contributions of the inexpensively ob-
tained texture properties, we can observe performance accu-

racy for each model toggled with property infusion. In short,
performance accuracy improves with the addition of property
infusion. This is expected as more information has been
provided to the model although the information provided
is crudely obtained. However, the RoboSkin dataset enjoys
greater benefit from property labels. This is because the weak
supervision at the latent space provides more distillation for
the noisy RoboSkin dataset collected without strict force or
velocity control.

Comparison among the last three columns (c20BT,
c20BTcombined, and c50BT) demonstrates that the perfor-
mance improvement achieved by the proposed model is
rather invariant to the change in number of data samples
(c20BT vs c20BTcombined) and change in the number of
classes (c20BT vs c50BT).

Since comparable results can be achieved on a few
datasets, we take c20BT as an example to show the confusion
matrix and visualization of the latent space.

Fig. 3 shows the illustrative confusion matrix of ESTRAN
model trained on c20BT dataset with property labels. Five
folds of data are aggregated to demonstrate the overall
performance on the whole dataset. The result is nearly an
identity matrix with few scattered samples.

Fig. 3: Confusion matrices of models trained on c20BT

Since tactile sensor readings are multi-dimensional and
sequential in time domain, the t-distributed stochastic neigh-
bor embedding (t-SNE) plots are generated to visualise the
distribution of the extracted features in the latent space. Fig.
4 shows the sample plots of c20BT dataset for ESTRAN
model, with and without property labels. Colors represent
different materials and the shapes represent the texture prop-
erties. It is shown that the different textures can be clearly
separated in the latent space and they can be grouped better
with additional property labels.

D. Experiment 2: End-to-end training with drastically re-
duced latent space dimension

When the latent space is large, it is possible that simi-
lar information is redundantly encoded by several neurons.



TABLE IV: The mean (standard deviation) % accuracy of end-to-end training results on individual datasets
with dimension of latent space = 40.

Model with property? c20icub c20BT c20BTcombined c50BT
RAEC False 88.5 (4.41) 88.3 (1.57) 90.8 (2.25) 89.3 (1.27)
RAEC True 90.7 (3.86) 90.0 (2.60) 92.8 (1.14) 91.0 (2.01)
ESTRAN False 89.8 (3.91) 94.9 (1.63) 95.9 (0.73) 94.0 (2.24)
ESTRAN True 91.7 (4.85) 95.6 (2.02) 96.7 (0.67) 95.0 (1.51)

(a) t-SNE plot for ESTRAN with property labels

(b) t-SNE plot for ESTRAN without property labels

Fig. 4: Visualization of latent space vectors by t-SNE

Therefore, pushing one neuron to learn a specific property
may not offer great advantages. To further investigate on the
information gain from the crudely obtained property labels,
we drastically reduce the latent space to one-tenth (1/10)
of the original dimension size and observe how performance
changes when the model is trained with and without property
labels. Moreover, as the ORS provides a simpli The results
are shown in Table V.

We can observe from both Tables IV and V that when
the latent space size is drastically reduced, the performance
of most models deteriorate as expected. This is especially
true for the base RAEC model. For the ETRAN model,
the performance for the last two datasets seem to produce
even better results without the crude property labels while
the dimensionality is drastically reduced. However, this is
inconclusive as the performances are well within 1 stan-
dard deviation from each other. One possible explanation
is that the BioTac datasets have high signal-to-noise ration,
by adding the crude property labels when the number of
neurons are reduced to a small fraction, the confusion from
these noisy labels has much stronger influence to the model
performance. As such, the converse seems to also hold for
the RoboSkin dataset which brings the model performance

back on track.

E. Experiment 3: Transfer learning on heterogeneous sensor
datasets

One of the problems that we aim to tackle by introducing
GRUs at the Outer Recurrent Stage is that the RAEC
approach only shares the common representation at the latent
space between sensors. It does not provide a common model
to be used or transferred. Therefore, we treat GRUs as sensor-
based adaptors and that split the input data into different fre-
quency bands and decouple the sensor-specific information.
With the reconstruction loss and classification loss added to
the LSTM variational autoencoder, the Inner Recurrent Stage
is dedicated to learn common temporal signatures that are
sensor-agnostic. This will allow the Inner Recurrent Stage
model to be transferred across heterogeneous tactile sensors.
To examine the transferrability of the proposed model, we
first train the ESTRAN model on BioTac dataset. The ES-
TRAN model for the RoboSkin dataset is then initialised with
the Inner Recurrent Stage copied from that of the BioTac
dataset model, leaving the header network and the Outer
Recurrent Stage to for training. Since the GRUs represent
the sensor-specific conversion, they are assumed to be able to
learn and adapt well for data mapping. Should transferrability
occurs, the RoboSkin dataset will be able to learn with
similar performance results with the IRS fixed at the model
parameters used for the BioTac dataset.

For the BioTac model, we follow the aforementioned
parameter setting and evaluate the transferrability for mod-
els trained using c20BT. c20BT has the same number of
samples and same texture classes as c20icub and is used to
benchmark the sensor plasticity under the same amount of
input information. Fig. 5 shows the speed of convergence of
models 1) trained from scratch 2) transferred from models
pre-trained on BioTac dataset.

The model transferred from c20BT achieves a test ac-
curacy of 92.3%, about 0.5% increase compared to the
baseline model trained on c20icub from scratch. Fig. 5 also
shows that the transferred model (yellow line) maintains a
sightly higher position than the baseline model (blue line),
which demonstrates that the higher-level temporal texture
representation is indeed sensor-invariant and can be used to
facilitate training across heterogeneous datasets.

IV. CONCLUSION

In summary, this work proposed ESTRAN, a two-stage
recurrent networks for tactile texture representation learning
with enhanced explainability and transferrability across het-
erogeneous datasets. It consists of a sensor-specific header



TABLE V: The mean (standard deviation) % accuracy of end-to-end training results on individual datasets
with dimension of latent space = 4.

Model with property? c20icub c20BT c20BTcombined c50BT
RAEC False 84.8 (9.56) 85.4 (2.44) 88.4 (2.67) 78.5 (0.87)
RAEC True 88.3 (4.34) 85.6 (2.73) 87.9 (2.09) 83.1 (2.06)
ESTRAN False 88.7 (6.31) 92.3 (4.00) 96.2 (1.19) 94.3 (2.08)
ESTRAN True 90.9 (4.71) 95.3 (1.47) 95.2(1.34) 93.5 (2.79)

Fig. 5: Comparison of the speed of convergence for transfer
learning

network, an outer recurrent stage for resampling, and an inner
recurrent stage to learn sensor-invariant temporal signatures.
The results show a reasonable improvement in classification
accuracy and indicate robustness across different textures.
We demonstrated that by driving the explainable labels to
influence on the learning of the latent neurons towards the
physical meanings, the overall model is able to improve
performance accuracy. With the introduction of a sensor-
dependent ORS layer, we also demonstrated that transfer
learning is able to take place between heterogeneous tactile
sensor datasets. As a result, strict experimental conditions
that improve learning results as well as strict constraint for
joint training are no longer required under the ESTRAN
model, which allows for higher generalizability and is more
pragmatic for real-life applications. Moreover, we have also
released a larger tactile texture dataset for the community.

Future work includes the investigation into making the la-
tent vector even more explainable by introducing an increas-
ing number of inexpensively obtained property labels, having
cross validations with more types of sensors and a greater
range of textures to test the efficacy of the ESTRAN model.
Moreover, combination of different exploratory movements,
class-incremental learning, and real-time active exploration
would be attempted for a more comprehensive approach for
texture perception.
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